

Job title:	Gwynedd Skips
Report Lype:	Geo-Environmental Appraisal
Prepared for:	Gwynedd Skip & Plant Hire
Date:	18 May 2022

Document Control Form		
PROJECT	GWYNEDD SKIPS	
REPORT NAME	GEO-ENVIRONMENTAL APPRAISAL	
REPORT REFERENCE	GRO-22013-3516	
STATUS	FINAL	
ISSUE DATE	18 MAY 2022	
REVISION		
CLIENT	GWYNEDD SKIP & PLANT HIRE	
CLIENT CONTACT	-	
For and Behalf of Groundtech Consulting		
SIGNATURE	A.White	
AUTHOR	Adam White BSc (Hons)	
SIGNATURE	B. Mue	
CHECKED	Bradley Massey BSc (Hons) FGS	
SIGNATURE	Slyl	
REVIEWED	James Doyle BSc (Hons) CGeol FGS	

SUMMARY

Site Details		
Site Location	The two site locations are located on Cibyn industrial estate which is approximately 2 miles east of Caernarfon town centre. Both sites are located to the east of the industrial estate.	
Site Area	The skip yard (Site A) almost square in shape and approximately 0.9 hectares in area. The site is an existing skip and plant hire facility which processes the skip waste as well as also housing welfare and offices. The site is split up into 3 separate areas all being topographically level. The first section of the site is the waste process area located to the west, which comprises concrete surfacing. The second is the garage and yard along the north east of the site which comprises tarmac surfacing. The final area of site A, the office building and car park located to the south east comprised concrete surfacing. The factors in area. The site is currently occupied by a former abattoir, the site has a slight incline to the west and has areas comprising topsoil and hardsurfacing of concrete and slate. The main feature of the site is the former abattoir located in the centre – west of the site with other features such as farm sheds to the south.	
	Preliminary Risk Assessment	
History	The site was undeveloped until the 1986/89 when a small building (shed) was constructed in the south western area of site A. Further development took place in 1994 for Area A as additional buildings were constructed in the south east and north east. Development began on Area B in 2001 with a warehouse constructed at the centre as well as a small building to the north east. In 2003 an office building was constructed to the south of site A and site B is now labelled 'Abattoir' with extensions present to the north east and south west of the warehouse.	
Geology/Hydrogeology	The site is indicated to be underlain by Glacial Till (Devensian), this strata characteristically comprises clay, silt, sand and gravel. The bedrock is the Nant Ffrancon Subgroup which comprises siltstone. The superficial deposits in this area are classified by the Environment Agency as an Unknown aquifer however Glacial Till deposits are typically characterised as a Secondary Undifferentiated aquifer (This is assigned where it is not possible to attribute either category A or B to a soil type. In general, these layers have previously been designated as both minor and non-aquifer in different locations due to the variable characteristics of the soil type). The bedrock is also classified as a Secondary Undifferentiated aquifer. Two historic potable water abstractions are present 868m southeast of site and are both associated within household use from a pond at Glan Gwna Holiday Park Ltd, dated 2006. No groundwater abstractions are indicated within 2km of site.	
Mining	The site is not located within a coal mining area.	
Environmental Setting	The site is not indicated to lie within a SPZ. The nearest watercourse is an unnamed tributary to Afon Seiont immediately south of the abattoir area. Radon precautions are not required.	

	Human Health	Nearby sources of contamination have been identified as well as onsite sources associated with the skip waste site and abattoir. The risk has been assessed as Low due to the proposed development to be covered in hardsurfacing.	
Pollution Linkage (PL) Assessment	Controlled Waters	The risk to controlled waters was assessed as Low.	
	Permanent Ground Gas	Several sources of permanent ground gases have been identified within influencing distance of site and the risk is considered to be Moderate.	
	Grou	und Model	
Made Ground Soils	Made Ground was encountered generally granular with minor co	across the site to depths of between 0.1m and 2.3m bgl and was nstituents of slate and brick.	
Natural Soils	Firm Clay was typically recorded beneath the Made Ground soils, the gravel and cobble content of the Clay increased with depth and boulders were encountered typically becoming too dense for the borehole to be progressed at 3.0m bgl across the Skip Yard (Area A) and 5.5m bgl across the abattoir (Area B).		
Bedrock	Bedrock was not encountered during the Ground Investigation.		
Groundwater	Groundwater was not encountered within any exploratory hole locations.		
	Ground Engir	neering Assessment	
Foundations	The most suitable foundations are considered to be pads constructed within the natural firm to stiff Clay deposits. All foundations should be deepened through the Made Ground.		
Highways	CBR values of 2 to 3% are likely to be achieved within natural cohesive strata. Made Ground should be assumed to be at formation level and achieve a CBR value of less than 2.5% unless proven otherwise by in-situ testing.		
SuDS	SuDS drainage testing was not carried out however it is unlikely feasible due to the natural Clay present beneath the entire site.		
	The main development constraint is the cobble and boulder content within the natural Clay deposits encountered beath the site.		
Constraints		taken at the position of the proposed workshop within the abattoir posed development plans. Confirmatory trial pits at this position are tion recommendations.	
	There is a risk of differential settlement within the proposed warehouse extension and movement joints are recommended along with consideration of angle of distortion.		
	GQRA and Rev	ised (PL) Assessment	

GWYNEDD SKIPS GEO-ENVIRONMENTAL APPRAISAL GRO-22013-3516

Human Health	No elevated contaminants of concern have been recorded, asbestos was detected in one sample of Made Ground. The site is to be completely covered in hardsurfacing and therefore the risk to human health is considered to be Low.	
Controlled Waters	Mobile contamination has not been recorded and groundwater is not considered to be a sensitive resource at the site. The risk to controlled waters is considered to be Low.	
Permanent Ground Gas	Interim ground gas monitoring results place the abattoir (Area B) within CS2 and ground gas precaution measures are required due to a single elevated concentration of CO ₂ beneath the footprint of the proposed development. The skipyard (Area A) falls within CS1 and no ground gas precaution measures are required based on the first monitoring visit. The site is not located within an area whereby radon precautions are required.	
Final Appraisal		

The following further work is recommended to progress the development to the construction phase:

- Completion of gas monitoring programme.
- Issue gas assessment.
- Confirmatory investigation at position of workshop in abattoir (Area B) post demolition.
- Additional topsoil sampling if material is proposed for reuse.
- Demolition and Refurbishment Asbestos survey.
- Tree survey by qualified arboriculturist.
- Detailed foundation design.
- Confirmation of remedial recommendations with regulators.

TABLE OF CONTENTS

1.0	INTRODUCTION	1
1.1	Project Objectives	
1.2	Proposed Development	
1.3	LIMITATIONS	2
2.0	SITE SETTING	3
2.1	Location	3
2.2	SITE DESCRIPTION	
3.0	ENVIRONMENTAL SETTING	5
3.1	Site History	5
3.2	GEOLOGY	6
3.3	Hydrogeology	7
3.4	Hydrology	7
3.5	Environmental Consultations	7
3.6	Radon	
3.7	COAL AUTHORITY CONSULTATION	9
4.0	CONCEPTUAL SITE MODEL AND RISK ASSESSMENT	
4.1	INTRODUCTION	
4.2	Potential Contamination Sources	
4.3	Pollution Linkages	
4.4	Receptors	
4.5	Preliminary Conceptual Site Model (CSM)	
5.0	SCOPE OF INVESTIGATION AND RATIONALE	
5.1	Project Objectives	
5.2	Scope of Works	
5.3	SOIL SAMPLING	
5.4	Geo-Environmental Testing	
5.5	Gas and Groundwater Monitoring/Sampling	
6.0	GROUND MODEL	21
6.1	Made Ground	
6.2	Natural Ground	
6.3	Bedrock	
6.4	GROUNDWATER	
6.5	WATCHING BRIEF	
6.6	Excavation Stability	
6.7	Excavation/Borehole Progress	
7.0	GROUND ENGINEERING	23
7.1	Geotechnical Testing Results	
7.2	Assessment Background	
7.3	Geotechnical Parameters	
7.4	Preliminary Foundation Design	
7.5	Building Near Trees	
7.6	Floor Slabs	
7.7	Construction	
7.8	Concrete Classification	
7.9	Highway Design	

7.10 7.11	Soil Percolation Testing Overall Stability	
8.0	LAND QUALITY	
8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9	GEO-ENVIRONMENTAL TESTING RESULTS - SOILS	31 32 34 40 40 41 41
9.0	FINAL APPRAISAL	
9.1 9.2 9.3	Land Quality Ground Engineering Required Supplementary Investigation	44
10.0	RELEVANT INDUSTRY REFERENCES	
	APPENDIX 1 - PLANS APPENDIX 2 - SITE PHOTOGRAPHS APPENDIX 3 - HISTORICAL PLANS APPENDIX 4 - BGS RECORDS APPENDIX 5 - GROUNDSURE REPORT APPENDIX 6 - CIRIA RISK ASSESSMENT METHODOLOGY APPENDIX 7 - EXPLORATORY HOLE LOGS APPENDIX 7 - EXPLORATORY HOLE LOGS APPENDIX 8 - GEO-ENVIRONMENTAL TESTING RESULTS APPENDIX 9 - GEOTECHNICAL TESTING RESULTS APPENDIX 10 - PERMANENT GROUND GAS MONITORING RESULTS APPENDIX 11 - COMMERCIAL END USE SCREENING VALUES APPENDIX 12 - JIWG RECEPTOR TOOL APPENDIX 13 - WASTE CLASSIFICATION REPORT APPENDIX 14 - RELEVANT LEGISLATIVE BACKGROUND APPENDIX 15 - LIMITATIONS	
Plans		

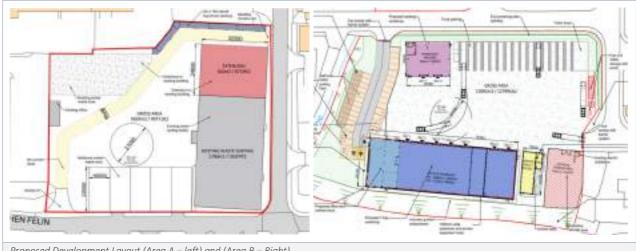
TIGHTS		
Plan Reference	Revision	Title
GRO-22013-P01	-	Project Location Plan
GRO-22013-P02	-	Preliminary Findings and Constraints Plan
GRO-22013-P03	-	Illustrative Preliminary CSM
GRO-22013-P04	-	Exploratory Hole Location Plan
GRO-22013-P05	-	Generalised Ground Model
GRO-22013-P06	-	Revised Illustrative CSM

1.0 **INTRODUCTION**

1.1 **Project Objectives**

Groundtech Consulting Limited have been instructed by Gwynedd Holdings Ltd and their consultant Kennedy Redford Limited to undertake a Geo-Environmental Appraisal for a site at Gwynedd Skips and Plant Hire in Caernarfon.

The objectives of the Preliminary Risk Assessment were to establish the sites environmental and geotechnical background in order to generate a Conceptual Site Model to identify any potential constraints and linkages which may affect the redevelopment of the site.


A main investigation was undertaken in accordance with BS 5930:2015, BS 10175:2017, BS 8576:2013 and Eurocode 7 to revise the CSM and quantify the level of risk identified in the PRA. The Appraisal has been prepared in accordance with current UK Legislation and to discharge Land Quality pre-commencement planning conditions.

The report has been undertaken to fulfil the requirements of a preliminary risk assessment in accordance with current risk assessment guidance.

1.2 **Proposed Development**

The proposed development is commercial end use comprising the following:

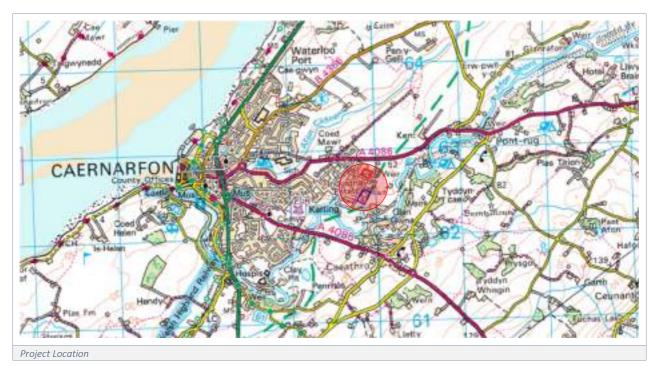
- Area A
 - > Extend the existing warehouse facility
 - > Demolish the office and extend the warehouse
 - > Demolish the workshop
- Area B
 - > Demolish existing buildings to make way for development
 - Construct 7 bay workshop facility including 2 ½ vehicle pits
 - > Staff office and welfare
 - Separate vehicle wash
 - > Yard
 - Fuel storage (client preference underground)

Proposed Development Layout (Area A – left) and (Area B – Right)

1.3 Limitations

This Preliminary Risk Assessment is based on information obtained from a number of sources, and the information is assumed to be correct.

Other conditions may exist on the site that have not been taken into account in this assessment as they are outside the scope of works. Groundtech Consulting are not responsible for these circumstances that are not outlined in the report.


The assessment has been prepared for the exclusive use of the client. No third parties may rely on or reproduce the contents of the report without the written permission of Groundtech Consulting Limited. If any unauthorised third party comes into possession of the report they rely on it at their own risk and Groundtech Consulting Limited will not be obliged to provide a duty of care.

2.0 SITE SETTING

2.1 Location

The site areas are located circa 1.8 kilometres east of Caernarfon Town Centre, as shown on the Project Location Plan *GRO-22013-P01*. The site areas are approximately centred on National Grid Reference 249896, 362735 (*Gwynedd Skips and Plant Hire*) and 249859, 362483 (*Abattoir*).

Access to the site is gained off Lon Hen Felin (Gwynedd Skips and plant hire) and Lon Cae Darbi (Abattoir).

2.2 Site Description

The site is separated into two main areas - Gwynedd Skip and plant hire yard (Area A) and an abattoir warehouse and yard (Area B).

Area A - Gwynedd Skip & Plant Hire

This area of site is almost square in shape and approximately 0.9 hectares in area, the topography of site is generally level.

This area of site comprises a large skip yard which completely covered in tarmac and concrete hardsurfacing for HGV, heavy plant and machinery usage. A large warehouse is present to the east as well as a smaller building immediately north utilised for repairs and storage. The large warehouse is currently utilised as a recycling plant/warehouse.

A small workshop is present at the south western area of site accessed via the main skip yard area to the centre.

A two-storey office building and café is present to the south surrounded by a tarmac surfacing drive/car park and separated from the main section of site by a two-storey tall corrugated iron wall.

The site is predominantly boarded by a two-storey tall wall however palisade fencing is present to the south at the office/café. The south east boundary is distinguished by the extent of the warehouse.

The site is surrounded by following features/land uses:

•	North	-	Vehicle workshop and access road.
•	East	-	Unnamed road followed by an HGV fuelling yard (Shell Gas).
•	South	-	Lon Hen Felin road followed by industrial land use.
•	West	-	Industrial land use.

Area B- Abattoir

This area of site is approximately 1.05 hectares in area, rectangular in shape and the topography is level.

The main feature of this site is the existing abattoir to the centre-west section with associated buildings attached to the south west, south and east. This western area of site is completely covered in concrete hardsurfacing.

The eastern section of site is predominantly soft landscaped. Two buildings are present in the south east, one comprises a animal shed for temporarily holding animals and with the other being a storage warehouse. The northern area is utilised as outdoor storage with an area designated as part of a pumping station comprising a small concrete pit filled with water. A small electrical substation is visible in the northern area.

Palisade fencing distinguishes all site boundaries alongside semi-mature to mature trees. Although the site is level, Lon Car Darbi sits at a higher level due to a steep slope at the immediate western site boundary. An embankment is also present along the eastern boundary with site levels reducing by approximately 1.5m.

The abattoir area is surrounded by following features/land uses:

- North Vehicle service & repairs workshop with hardsurfacing car park.
- East Fields and Caernarfon Bypass (A487).
- South Industrial land use (Dwyfor Oils) followed by fields.
- West Lon Cae Darbi followed by skip yard and industrial land use.

Site photographs are presented in *Appendix 2* and relevant features are recorded on the Preliminary Development Constraints Plan *GRO-22013-P02*.

For the remainder of the appraisal, the skipyard is referred to as 'Area A' and the abattoir is referred to as 'Area B'.

3.0 ENVIRONMENTAL SETTING

3.1 Site History

Available historical maps have been obtained, a list of dates and scale are listed in the table below:

Scale	Date
1:1,250	2003.
1:2,500	1889, 1900, 1914, 1965, 1972, 1974, 1980, 1977/80, 1983, 1986/89, 1994, 1994/95, 1995.
1:10,000/10,560	1888, 1899/91, 1913, 1949, 1959, 1976, 1990, 2001, 2010, 2022.

The plans were examined and potential issues have been identified and summarised in the table below:

Date	Site	Surrounding Area
1888	Undeveloped land comprising fields.	Surrounding area is predominantly fields with sparse agricultural buildings and associated pumps present c.125m east and c.100m west. There are also two wells indicated c.100m north west and c.100m east. A single road passes between the two areas in a NW to SE direction. Bod Chual Flour Mill sits c.200m south east of site with associated weirs and sluices.
1913	-	Spring present c.25m north. Bod Chaual Flour Mill is now labelled 'Old Mill' on maps.
1972	-	Agricultural buildings/land use to west no longer present. Vehicle Testing Station (MOT) constructed c.220m west.
1976	-	Significant housing development c.100m south of site and replacing former mill c.200m south east. Surrounding areas to the North, East and South West remain predominantly fields.
1980	-	Warehouse developed immediately north of Area A. Further industrial and commercial development from west spanning towards site comprising mostly warehouses and unspecified buildings. Areas to north east and south east of site remain occupied by fields.
1983	-	Garage, depot, works and depot are indicated immediately west of Area A. Electrical Substation present 100m north. Council depot and further surrounding unspecified depots, warehouses and commercial buildings constructed to west.
1986/89	Small building (Shed) constructed at south western section of Area A.	Pumping station visible immediately north of Area B. Additional three buildings developed between Area A and Area B, all considered to be commercial/industrial associated with the expansion of the industrial estate replacing track. Significant road network development between two Areas of site.
1990	-	Industrial estate now labelled Cibyn Industrial Estate.

1994	Area A split up into three sections and additional buildings constructed within the south east and north east.	Industrial estate expansion surrounding site. Section of fields immediately east of Area A now developed with industrial/commercial land use. Majority of land use to east remains fields.
2001	<i>Warehouse</i> constructed within Area B at centre. Small building indicated to the north east.	Further industrial building development surrounding site.
2003	Office building constructed within Area A to the south. Area B is now labelled ' Abattoir ' and extensions are presented to the north east and south west of the warehouse.	No significant changes.
2010	Small building situated at the south east area of Area B.	<i>Warehouses</i> present to north east and south west in previously undeveloped areas.
2022	Further building constructed at south east of Area B.	Both Areas of site situated within Industrial estate and are surrounded by unspecified warehouses and commercial buildings. Fields are present to the east with the exception of immediately east at Area A.

The historical plans are presented in Appendix 3.

3.2 Geology

The following British Geological Survey (BGS) records and other available information were inspected to accurately determine the geology underlying the site:

- 1:50,000 Scale Geological Sheet Anglesey Sheets 92, & 93 Solid and Drift Edition.
- 1:50,000 Scale Geological Sheet 94, 105 & 106 Solid and Drift Edition.
- Memoir.
- BGS Records.

Made Ground

BGS records indicate no Made Ground is present on the site, however due to the historic developments Made Ground is anticipated.

Superficial Deposits

The site is indicated to be underlain by Glacial Till (Devensian), this strata characteristically comprises clay, silt, sand and gravel.

Solid Geology

The bedrock is the Nant Ffrancon Subgroup which comprises siltstone.

BGS Records

The nearest borehole record is located circa 550m from both areas of site and was drilled to a depth of 61m bgl. The geology comprised soils and stones to 1.5m bgl underlain by brown clay and stones (Glacial Till) to 7.0m bgl followed by dark grey fractured Mudstone. Water strikes were observed at 9m, 12m, 21m, 36m, 42m and 55m bgl.

The BGS records are presented in Appendix 4.

3.3 Hydrogeology

The superficial deposits in this area are classified by the Environment Agency as an Unknown Aquifer however Glacial Till deposits are typically characterised as a Secondary Undifferentiated aquifer (This is assigned where it is not possible to attribute either category A or B to a soil type. In general, these layers have previously been designated as both minor and non-aquifer in different locations due to the variable characteristics of the soil type).

The bedrock is also classified as a Secondary Undifferentiated Aquifer.

The site is not indicated to lie within 500m of a Source Protection Zone and no groundwater abstractions are indicated within 2km of site.

3.4 Hydrology

The nearest named watercourse is Afon Seiont which is located 109m south of site.

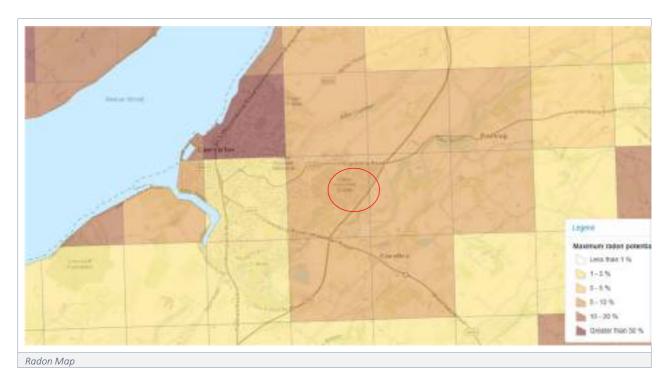
Two historic potable water abstractions were present 868m south east of site, both are from surface waters and are associated within household use from a pond at Glan Gwna Holiday Park Ltd, dated 2006.

Environment Agency information indicates that the site is outside a flood risk zone and is not at risk of flooding.

3.5 Environmental Consultations

A request has been submitted to the Contaminated Land Officer at Gwynedd County Council for information pertaining to the site. Relevant information pertained will be forwarded upon receipt.

An environmental consultation has been conducted through Groundsure, which accesses British Geological Survey and Environment Agency databases. The complete EnviroInsight Report can be found in *Appendix 5*, a summary of the more relevant points are presented in the table below.


Record	<250m	250 – 500m	Description
Authorised Processes	1	1	Nearest situated 226m west associated with respraying of road vehicles. Timber manufacturer 285m west.
Control of Major Accident Hazards (COMAH)	2	-	Former NIHHS site indicated onsite and current COMAH site present c.6m north east of site (COMAH Lower Tier Operator).
Hazardous Substance Storage/Usage	4	-	Four hazardous substance consents granted between 30m and 209m west of site associated with Dwyfor Oils Ltd, Avanti Gas Ltd and Calor Gas Ltd.
Historical Tanks	2	7	Nearest tanks c.31m north east, 130m west and 306m west from site and are unspecified.
Historical Garages	4	-	Garage indicated 17m north west and vehicle testing stations present 102m west, 137m west and 138m west.
Historic Landfill	2	2	Refuse Tips present c.233m east, 232m east, 345m east and 360m south west.
Historical Energy Features	3	6	Electricity substations situated from 92m north of site, dated between 1971 and 1995.

Record	<250m	250 – 500m	Description
Historic Waste Sites	6	-	Historic waste transport site present immediately south east of Area A. Several waste transfer sites in surrounding areas.
Pollution Incidents	12	7	Several pollution incidents present onsite (Area A) associated with construction and demolition wastes, vehicle and vehicle parts and atmospheric pollutants with no impact to minor impact to land, dated between 2001 and 2007.
Active Landfill Sites	1	-	Landfill site taking Non-Biodegradable wastes at Watkin Jones & Son Ltd c.233m east.
Active Waste Sites/Exemptions	91	11	Gwynedd Skip & Waste site is an active waste site (onsite). Other waste sites c.92m east and 225m south west.
Discharge Consents	1	4	Nearest discharge consent 129m north east of site.
Petrol Filling Stations	-	-	-
Current industrial Uses	19	-	Gwynedd skip & plant hire and Shon Eilian Iron works indicated at Area A. Menai Meats present at Area B. Nearby industrial land use includes electricity substations, pumping station, tanks, and commercial land use.

3.6 Radon

Map 12 Northwest Wales from BRE 211 and HPA was examined which defines areas which require radon protective measures. The probability is between 5% and 10% and Gwynedd Skips is located within area requiring radon precautions in foundations in accordance with BRE Report 211 'Radon – Guidance on protective measures for new dwellings' 2015 Edition.

The radon data in the Groundsure report is supplied by the BGS/Public Health England and is the definitive map of Radon Affected Areas in Great Britain and Northern Ireland. The Groundsure report contradicts the radon map data and places the radon risk as less than 1% - *no radon protection measures are required*. The

dataset was created using long-term radon measurements in over 479,000 homes across Great Britain and 23,000 homes across Northern Ireland, combined with geological data. The dataset is considered accurate to 50m to allow for the margin of error in geological lines, and the findings of this report supersede any answer given in the less accurate Indicative Atlas of Radon in Great Britain, which simplifies the data to give the highest risk within any given 1km grid square.

3.7 Coal Authority Consultation

The site is outside the area of a designated coalfield, the Law Society and Coal Authority state a mining search is not required.

4.0 CONCEPTUAL SITE MODEL AND RISK ASSESSMENT

4.1 Introduction

The potential level of risk posed by contaminants in soil and/or groundwater will be influenced by the type and concentration of the contamination at source, the likelihood of exposure occurring, the potential pollution linkages and the likely chronic or acute effects on the receptors.

A contaminant is defined as a substance that has the potential to cause harm, a risk is considered to exist if such a substance is present at sufficient concentrations to cause harm and if a pathway is present a receptor could be exposed to the contaminant.

Section 4.0 compiles the information from the previous sections to assemble a Conceptual Site Model to inform the risk assessment process. The potential sources identified on the site and off the site that are within influencing distance are assessed to determine if pollution linkages exist and an unacceptable risk is posed to human health and controlled waters. The assessment has been carried out on a qualitative basis and aims to produce a complete and comprehensive Preliminary Conceptual Site Model, the potential pollution linkages are displayed on *GRO-22013-PO3 Illustrative Preliminary CSM*.

Three potential types of impacts exist for a site and all three need to be considered in the qualitative preliminary risk assessment:

- Impacts from sources on the subject site.
- Impacts to the surrounding area from the subject site.
- Impacts to the subject site from the surrounding area.

4.2 Potential Contamination Sources

On-Site Sources and Associated Contaminants of Concern (CoC)

From the information obtained during the preliminary risk assessment some onsite sources of contamination have been identified which may affect the redevelopment of the site for commercial end use, these include:

- Gwynedd Skips Waste Site and Workshop/repair garage (Area A)
- Shon Eilian Iron works (Area A)
- Pollution incidents associated with demolition, construction and vehicle part repair waste (Area A)
- Abattoir (Area B)
- Made Ground (Area A & B)
- Substation (Area B)

Limited Made Ground is anticipated associated with the construction of warehouses/offices/commercial buildings at both areas of site and could be a source of metals, Speciated Polycyclic Aromatic Hydrocarbons (PAHs), ground gases and asbestos.

The iron works present at the small building within Area A is considered to be a source of heavy metals, cyanide, sulphates, phosphates, asbestos, fuel/oils and PAHs.

The Gwynedd Skips Waste Site and the former pollution incidents located in Area A present a source of contamination in the form of metals, hydrocarbons, speciated PAHs, and asbestos. The workshop/repair garage is considered to be a source of fuels/oils as well as metals, PAHs and SVOCs/VOCs.

Contaminants associated with the abattoir in Area B may include organics, anthrax, fuels/oils and PAHs.

The electrical substation could be a source of PolyChlorinated Biphenyls (PCBs) used as coolants in the transformers.

Offsite Sources and Associated Contaminants of Concern (CoC)

Several offsite sources of contamination have been identified through the PRA and include the following:

- Historic Bod Chaul Flour Mill c.200m south/south east
- Vehicle Testing Station c.220m west
- Surrounding Industrial works
- Garage, depot, works and depot immediately west of Area A
- Nearby electrical substations (92m north nearest)
- Pumping station immediately north at Area B
- Refuse tips c.232m east
- Hazardous substance licenses c.30m to 209m from site
- Unspecified tanks c.31m north east and 130m west
- Non-Biodegradable Landfill c.233m east
- Waste sites c.92m east and 225m south
- Discharge consent c.129m north east

The garage and vehicle testing station are potential sources of metals, acids, asbestos, speciated PAHs, solvents, fuels, and oils.

Bod Chual Flour Mill may be a source of contaminants such as organics, metals, fuels/oils, asbestos, permanent ground gases and asbestos.

The nearby industrial estate and warehouse present sources of contaminants such as heavy metals, speciated PAHs, Volatile Organic Compounds (VOC), Semi Volatile Organic Compounds (SVOCs), sizing agents, water repellents, soaps, detergents, pesticides, herbicides, organics, fuels/oils, ash, mineral oils, asbestos, PCBs and ground gases.

Electrical substations may be a source of PCBs depending on the age of the transformers.

The active pumping station presents a source of contaminants such as organic materials, methane, fuel/oils, metals and speciated PAHs.

The refuse tips and active landfill site are considered to be a source of permanent ground gases including carbon dioxide, carbon monoxide and methane.

Hazardous substance licenses may be a source of hazardous material such as fuel derived hydrocarbons depending on if any leaks/spills have occurred and migrated into the ground. The tanks are also a source of fuels/oils.

4.3 Pollution Linkages

The definition of a pollution linkage is a medium which allows a contaminant to impact a receptor. Potential pollution linkages have been recognized for the commercial development from the identified contamination sources that exist.

At this stage the potential contaminants identified above are considered to pose an unacceptable risk human health and controlled waters through the following pollution linkages:

- Direct soil and dust ingestion.
- Dermal contact with soil both indoor and outdoors.
- Indoor air inhalation from soil and vapour.
- Outdoor inhalation of soil and vapour.
- Migration and accumulation of ground gas into internal spaces.
- Impaction of groundwater from soil contamination (diffuse and point).
- Impaction of groundwater from groundwater plume.
- Migration of soil and groundwater contamination impacting surface waters.

4.4 Receptors

Receptors generally fall into the categories of human health or controlled waters within the river basin system. The recognized receptors are listed below:

- End site users
- Adjacent site users
- Afon Sioent 109m south of site
- Secondary Undifferentiated Aquifers
- Clean potable water supply pipe.

4.5 Preliminary Conceptual Site Model (CSM)

The factual information obtained from the consultations and summarised in Section 2.0 and 3.0 has been used to compile a Preliminary CSM. Using Source-Pathway-Receptor assessment criteria that is applicable in the UK, a risk assessment has been completed to determine if a plausible pollution linkage exists between the identified contaminants and receptors. The risk classification has been estimated in accordance with the CIRIA C552 assessment criteria outlined in *Appendix 6*.

Human Health Pollution Linkage Assessment

• The table below represents the first stage in the land quality risk assessment process - **the Qualitative Risk Assessment**.

• In order for a development site to be deemed 'suitable for use' the level of risk needs to be reduced to an acceptable level - low to negligible risk. The purpose of each stage of risk assessment is to establish if there is a requirement for additional stages of assessment in order to have sufficient confidence to support a risk characterisation or remedial action.

	Conceptual Site Model					Qualitative Risk Assessment		
PL	Potential Source	Pollution Linkage	Likelihood	Consequence/ Severity	Risk Rating	Rationale and Action		
PL1	Contaminated Soils	Ingestion of soil and dust. Dermal contact with soil.	Unlikely	Medium	Low	Pollution Linkage 1 refers to proposed site users coming into contact with contaminated soils on the site. The Gwynedd Skip area has historically been utilised as a skipyard and was first developed in 1986. The abattoir area has solely been utilised as an abattoir with unspecified surrounding buildings. Limited Made Ground is anticipated associated with the construction of the skip yard and abattoir. Onsite sources of contamination include the abattoir which is considered to be a source of organics, pathogens (if animal waste present), fuels/oils and PAHs and the skipyard which may be a source of heavy metals, hydrocarbons, PAHs and asbestos. Nearby offsite sources of contamination include tank 31m north east. These features present		

	Conceptual Site Model					Qualitative Risk Assessment
PL	Potential Source	Pollution Linkage	Likelihood	Consequence/ Severity	Risk Rating	Rationale and Action
						a source of heavy metals, VOCs/SVOCs, asbestos and hydrocarbons. All other sources are considered to be outside an influencing distance of site. The proposed development is commercial and will be entirely covered in hardsurfacing and a pollution linkage is not considered to exist.
PL2	Contaminated Soils	Inhalation of vapour.	Low likelihood	Medium to Severe	Moderate to Low	If present vapours have the potential to migrate into confined spaces within the proposed development. At the skipyard, hydrocarbon contamination may be present within the shallow Made Ground due to spills/leakages with machines onsite, ironworks onsite, vehicle repair garage immediately west, and Dwyfor Oils c.34m south west. Sources of hydrocarbons have been identified on the site, however the hardsurfacing will have restricted impaction of then soils and any contamination is likely to be heavier range, a minor pollution linkage is considered to exist at this stage. No significant sources of hydrocarbons/vapours have ben identified within the abattoir (Area B) and no pollution linkage is considered to exist.
PL3	Contaminated Soils	Inhalation of soil dust by adjacent site users.	Unlikely	Medium	Low	Pollution Linkage 3 relates to contamination on the subject site affecting adjacent site users. All the contaminative sources identified on site are indictive of the surrounding industrial area and potentially less impactful sources than most surrounding sources such as vehicle and industrial workshops, therefore no pollution linkage is considered to exist.

GWYNEDD SKIPS GRO-22013-3516

	Conceptual Site Model					Qualitative Risk Assessment		
PL	Potential Source	Pollution Linkage	Likelihood	Consequence/ Severity	Risk Rating	Rationale and Action		
PL4	Contaminated Soils	Attacking potable water supply pipe.	Low Likelihood to Likely	Medium	Moderate to Low	Pollution Linkage 4 refers to the possible contaminants permeating potable water pipes and consumption by the future site end users of the tainted water supply. Deep Made Ground may be present at installation depth which may be contaminated with a range of organic contaminants. A viable pollution linkage is considered to exist and further investigation is required if new potable water supply pipes are to be installed.		
PL5	Ground Gas	Migration and accumulation of ground gas in internal spaces.	Likely	Medium to Severe	Moderate	Made Ground is likely present beneath much of the areas of site due to the presence of the current industrial land use in the form of a skip yard and abattoir. Nearby sources of permanent ground gases include waste sites c.92m east and c.225m south, non-biodegradable landfill c.233m east and refuse tip c.232m. Glacial Till underlies the site which will inhibit migration of ground gases however due to the amount of sources present, a linkage is considered to exist and an intrusive investigation comprising the installation of gas monitoring wells is recommended. The site is not within an area requiring radon precautions within foundations.		

Controlled Waters Pollution Linkage Assessment

	Qualitative Risk Assessment	Generic Quantitative Risk Assessment		Detailed Quantitative Risk Assessment or Remedial Action		Risk Assessment.
		Conceptual Site Mo	odel			Qualitative Risk Assessment
PL	Potential source	Pollution linkage	Likelihood	Severity	Level of risk	Rationale
PL6	Contaminated Soils	Impaction of groundwater from soil contamination (diffuse and point). Impaction of groundwater from groundwater plume.	Unlikely	Medium	Low	Potentially contaminated Made Ground is likely to be present beneath the site associated with the skip and plant yard and abattoir. Geological maps indicate that the superficial deposits at site are Glacial Till (Secondary Undifferentiated) and the solid geology is the Nant Ffrancon Subgroup (Secondary Undifferentiated). The site is not located within 500m of a Source Protection Zone and there are no surface water, groundwater or potable water abstractions within 500m of site. Furthermore, the proposed development will be completely covered with hardsurfacing and groundwater is not considered a sensitive resource. This will considerably reduce infiltration and leaching of potential contaminants, therefore no pollution linkage is considered to exist.

	Conceptual Site Model					Qualitative Risk Assessment
PL	Potential source	Pollution linkage	Likelihood	Severity	Level of risk	Rationale
PL7	Contaminated Soils	Migration of soil and groundwater contamination impacting surface waters.	Likely	Medium	Low	Pollution Linkage 7 refers to the impaction of Afon Seiont 109m south of the site and nearby unnamed water features from contaminated soils and groundwater. No significant evidence of mobile contamination has been identified through the PRA. No pollution linkage is considered to exist.

5.0 SCOPE OF INVESTIGATION AND RATIONALE

5.1 Project Objectives

The aim of the fieldwork was to:

Determine the stratification beneath the site. Maintain watching brief for visual and olfactory evidence of contamination. Obtain samples using methodology in current guidance for contamination analysis. Identify realistic pollution linkages to groundwater. Obtain relevant geotechnical parameters for preliminary foundation design to address both ULS and SLS conditions. Determine if targeted supplementary investigation in areas of concern is required and for remedial design. Install monitoring standpipes for gas and groundwater monitoring. Assess the identified pollution linkages in the CSM.

5.2 Scope of Works

The following scope of works was completed between the dates of 14th March to 19th March 2022.

- 5 No. cable percussive boreholes (CP01 to CP05) were drilled to depths of between 2.0m and 5.5m bgl.
- 18 No. windowless sampling boreholes (WS01 to WS18) to depths of between 0.3m and 3.0m bgl.

The exploratory hole locations are presented on Groundtech Plan *GRO-22013-P04* and the exploratory hole logs are in *Appendix 7*.

The exploratory holes were positioned to establish the stratification beneath the site and target areas of concern as summarised in the table below:

Location	Target Rationale
WS01 to WS02	Proposed yard development (Area A)
WS03	Proposed fuel storage (Area A)
WS04 to WS05, CP01	Proposed vehicle wash
WS06 to WS10, CP02 to CP03	Proposed workshop and office
WS11 to WS12	Proposed yard development
WS13, CP04 to CP05	Proposed extension
WS14 to WS16	Possible contamination beneath existing yard (Area A)
WS17 to WS18	Demolish existing office and extend existing yard (Area A)

The exploratory holes were logged by a suitably experienced geo-environmental engineer in general accordance with the following current guidance:

- BS 5930 'Code of Practice for Site Investigations' 2015.
- BS EN 14688-1:2002 'Geotechnical Investigation and Testing Identification and classification of soil'.

• BS EN ISO 14689:2002 "Geotechnical investigation and testing – Identification and classification of rock".

5.3 Soil Sampling

During the intrusive investigation, representative samples were taken at regular intervals, changes of strata and where evidence of contamination existed. Laboratory analysis was scheduled on the samples obtained.

The samples obtained are summarised in the table below:

Soil Sample	Number
Environmental Sample	18
Disturbed Sample	5
Bulk Sample	3
Undisturbed U100 Sample	3

The samples have been obtained in accordance with current environmental and geotechnical guidance. The sampling plan has been designed obtain samples from all required strata using the correct methodology.

Disturbed samples of soil for geo-environmental testing were placed in the correct sampling containers as required by the laboratory in accordance with their MCERTS and UKAS Accreditation. Transportation was arranged in a timely manner and the samples were at the correct temperature

The sample locations and depths are recorded on the exploratory logs.

5.4 Geo-Environmental Testing

To inform the Generic Quantitative Risk Assessment, the following geo-environmental testing was scheduled to assess the risk from contamination on the site. The testing is based on the potential sources identified in the PRA and observations during the Ground Investigation.

Contaminant of Concern		Number
Arsenic, cadmium, chromium (total and hexavalent), copper, lead, mercury, nickel, selenium, zinc, sulphate and pH.	Soil	18
Asbestos Screening	Soil	18
Asbestos Quantification	Soil	1
Total Petroleum Hydrocarbons (TPH CWG)	Soil	5
Speciated Polycyclic Aromatic Hydrocarbons (PAHs)	Soil	18
Volatile Organic Compounds (VOCs)	Soil	5
Semi-Volatile Organic Compounds (SVOCs)	Soil	5

The Geo-Environmental Laboratory Testing Results are presented in Appendix 8.

Representative disturbed samples were obtained for all soil types encountered. Selected samples were scheduled for testing at an approved laboratory in accordance with BS 1377 'Method of Test for Soils for Civil Engineering Purposes' 1990. The following tests were scheduled:

BS 1377	Test Method	Number
Part 2	Water Content	7
Part 2	Plasticity Index Analysis	7
Part 2	Particle Size Distribution by Wet Sieve	2
Part 3	pH Value	7
Part 3	Water Soluble Sulphate Content	7
Part 7	Determination of Undrained Shear Strength in Triaxial Compression	1

The Geotechnical Laboratory Testing Results are presented in Appendix 9.

5.5 Gas and Groundwater Monitoring/Sampling

Gas and groundwater monitoring installations were constructed in the boreholes. The standpipes consisted of high-density polyethylene (HDPE) pipe - a bentonite seal was placed around the plain pipe and a clean gravel pack was placed around the slotted pipe. A summary of the installation construction is presented in the table below:

Location	Depth	Response Zone (m bgl)	Targeted Strata	Reason
CP05	3.00m	1.0 - 3.0	Made Ground & Natural clay	Ground Gas
WS04	3.00m	1.0 - 3.0	Natural Clay	Ground Gas
WS06	2.20m	0.5 - 2.2	Made Ground & Natural clay	Ground Gas
WS08	2.35m	1.0 - 2.35	Natural Clay	Ground Gas
WS09	3.00m	1.0 - 3.0	Natural Clay	Ground Gas
WS13	2.00m	0.5 - 2.0	Made Ground & Natural Clay	Ground Gas
WS15	1.70m	0.5 - 1.7	Made Ground & Natural Clay	Ground Gas

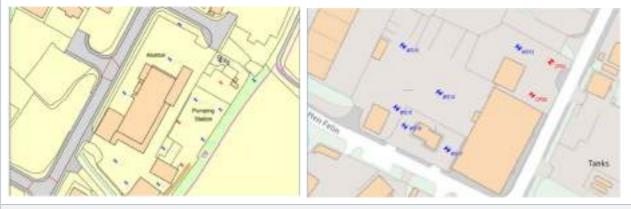
Permanent gas and flow rate monitoring was carried out using GFM 436 infrared gas monitor with integral electronic flow analyser. The measurements taken are listed below:

- Oxygen (O_2), carbon dioxide (CO_2) and methane (CH_4) as the percentage volume in air (%v/v).
- Hydrogen sulphide (H_2S) and carbon monoxide (CO) as the percentage volume in air (%v/v).
- Lower Explosive Limit (%LEL) of methane.
- Atmospheric and borehole pressure, including pressure trend.
- Flow measurements (l/hr).
- Weather and ground surface conditions.

Both peak and steady state conditions were monitored to understand the behaviour of the permanent ground gas, the steady state conditions were recorded by allowing the gas monitor to run for a minimum of 3 minutes.

Interim permanent gas and groundwater monitoring results are presented in Appendix 10.

6.0 GROUND MODEL


6.1 Made Ground

Made Ground was encountered beneath the site to a maximum depth of 2.3m bgl. The surfacing of site comprised concrete and tarmac to a maximum depth of 0.5m bgl across the areas of hardsurfacing (Area A) and sandy topsoil to a maximum depth of 0.5m bgl within the abattoir (Area B).

Two main Made Ground populations were encountered during the investigation and are described below:

- Dark grey/blue occasionally sandy gravel of slate was encountered within CP01 to CP04, WS03, WS04, WS06, WS14, WS15-WS18 from depths of between ground level and 0.3m bgl to depths of between 0.3m and 2.0m bgl.
- Red brown slightly sandy occasionally slightly clayey gravel of brick and slate was present within CP05, WS06, WS13, WS14 and WS15 from depths of between ground level and 0.5m bgl to depths of between 0.8m and 2.3m bgl.

Locally to WS15, black and red gravelly clay with minor constituents of brick and slate was observed between 0.8m and 0.9m bgl.

Exploratory Hole Locations

6.2 Natural Ground

The natural strata encountered generally confirmed the published geological records. One main natural stratification encountered during the investigation and are described below:

• Firm becoming stiff at depth brown occasionally gravelly Clay with low cobble and boulder content was encountered in all exploratory holes from depths of between 0.1m and 2.3m bgl to depths of between 1.2m and 5.5m bgl where the natural ground was penetrated.

6.3 Bedrock

Bedrock was not encountered during this investigation.

6.4 Groundwater

No groundwater strikes were observed during the investigation.

6.5 Watching Brief

A watching brief was maintained during the Ground Investigation for visual and olfactory evidence of contamination.

Evidence of visual contamination was recorded in WS14 and comprised black staining within the Made Ground.

6.6 Excavation Stability

No evidence of collapse was noted during the drilling of the boreholes.

6.7 Excavation/Borehole Progress

Obstructions in the form of natural cobbles and boulders within the Glacial Till were encountered during the drilling of the boreholes at depths between 0.3m and 2.5m bgl, where these were encountered the boreholes were typically terminated as it could not progress further.

Made Ground was not fully penetrated within WS14 at 1.0m bgl due to boulder obstruction and WS16 at 0.3m bgl due to a concrete obstruction.

7.0 GROUND ENGINEERING

7.1 Geotechnical Testing Results

Comparison of water content and the value of 0.4 times the Liquid Limit in accordance with BRE Digest 412 'Desiccation in Clay Soils' suggests significant desiccation has taken place when 0.4 times the Liquid Limit is greater than the actual water measured water content. This is a rudimentary method but also a good guide.

Results of the plasticity testing and the volume change potential of the Clay is summarised in the table below:

Reference	Depth	Modified PI	Volume Change Potential	Desiccated Y/N
CP02	3.0	24	Moderate	Ν
CP04	2.5	18	Low	Y
CP05	2.5	37	Moderate	Ν
WS04	1.5	29	Moderate	Ν
WS06	1.0	31	Moderate	Y

An additional plasticity index test was scheduled on CPO3 at 4.0m bgl however the sample has no displayable plasticity due to the granular nature of the sample.

Particle size distribution testing was undertaken on two of the natural cohesive superficial deposits taken beneath the site and the results are summarised in the table below:

Reference Depth (m bgl)		Donth (m hal)	Description	Soil Fraction (%)			
	Description	Cobbles		Sand	Silt/Clay		
	CP02	4.0	Brown slightly sandy slightly gravelly CLAY with cobbles.	44	16	12	28
	CP05	2.5 - 3.0	Brown slightly sandy slightly gravelly CLAY with cobbles.	34	18	21	27

7.2 Assessment Background

The ground engineering investigation has been undertaken to formulate an accurate ground model in order to undertake preliminary foundation design. The ground model has been constructed with a moderate to high level of confidence, the ground model has evolved from the information obtained by the PRA.

Area A - Skip & Plant Hire

This area of site is currently utilised as a skip yard with a workshop to the south west, recycling warehouse to the east and offices to the south. The proposed development is to demolish the office building and workshop and extend the warehouse to the north by an additional 810m².

At this area of site, Made Ground was encountered to a maximum depth of 2.3m bgl at the position of the proposed warehouse and was also underlain by firm to stiff cobbly Clay with low boulder content to a maximum depth of 3.0m bgl.

No groundwater was encountered within any of the boreholes.

As part of the enabling works, the existing office and workshop are to be demolished and foundations are to be grubbed up.

The development constraints in this area of site include the cobble and boulder content within the natural soils which require heavy plant and machinery for excavations as part of the construction works. The deepest boreholes were terminated at 3.0m bgl due to the boulder content forcing the drilling to terminate despite chiselling for significant lengths of time.

As the development in this area comprises an extension to the existing building differential settlement is another development constraint to be considered as there are cohesive ground conditions at the position of the proposed extension.

Area B - Abattoir

The entire western area of site is currently occupied by an abattoir warehouse surrounded by concrete hardsurfacing. The eastern section is unoccupied at the centre with two buildings present at the south and a pumping station area with electricity substation to the north.

The proposed development comprises the construction of a new warehouse and office building on the eastern area of the site, the current abattoir will be demolished. A vehicle wash area is proposed in the north east and a fuel storage area is proposed along the northern boundary.

Made Ground was encountered to a maximum depth of 1.5m bgl and was generally granular in nature underlain by slightly sandy gravelly Clay with cobble content of mudstone to a maximum depth of 5.5m bgl whereby the boreholes were terminated due to boulder obstructions.

Groundwater was not encountered during the Ground Investigation.

The existing abattoir, workshops and pumping area are to be demolished as part of the proposed development, all foundations and hardsurfacing should be grubbed up.

The main limitation associated with the site considered to be the ground conditions comprising cobble and boulder content within the firm to stiff Clay, therefore heavy plant and machinery will be required as part of the construction phase to achieve the required excavation depths. Excavations are likely to be enlarged due to the presence of the cobbles and boulders within the founding stratum resulting in wider trenches and increased concrete volumes required.

Another limitation is that only minimal investigation was undertaken at the position of the proposed warehouse in the area of the former abattoir (Area B) due to alterations in the proposed development. It is recommended that supplementary investigation comprising confirmatory trial pits is undertaken post demolition to ensue ground conditions do not differ and confirm geotechnical recommendations.

A small void is present at the north eastern area of the site associated with pumping station and will need to be backfilled with suitable engineered fill. This area does not fall within the footprint of the proposed development buildings however provides a potential constraint depending on the depth of the void.

7.3 Geotechnical Parameters

The geotechnical test results have been evaluated to derive geotechnical parameters for the soils underlying the site. A depth to 'SPT N value' graph is presented in plan GRO-22013-P05 to provide a generalised ground model for the site.

Characterization of the geotechnical parameters above has been undertaken to select a characteristic value, which is a cautious estimate of the value affecting the occurrence of the limit state.

The characteristic values of cohesive strata at each site have been selected based on correlation with SPT values. The characteristic values for Ultimate Limit State (ULS) selected are presented in the table below:

Stratum	Parameter	Selected Characteristic Value
Firm to stiff Clay	Undrained Shear Strength	45kPa

7.4 Preliminary Foundation Design

The following preliminary design is based on existing levels at the time of the Ground Investigation.

Area A - Skip and Plant Hire

The most suitable foundations for the proposed development at the skip yard are considered to be pad foundations constructed within the firm to stiff gravelly cobbly Clay at a minimum depth of 2.0m bgl. It is recommended that foundations are deepened through the Made Ground deposits.

Preliminary foundation design has been undertaken by calculation, a safe allowable bearing capacity of 100kN/m² is provided for ultimate limit state design for a 1.5m wide pad foundation constructed within the firm to stiff natural Clay at a depth of 2.5m bgl.

Using the above pressures, settlement criteria of 25mm will not be exceeded and Serviceability Limit State conditions will be satisfied. If variable strata are encountered at the base of foundation excavations, then foundations should be deepened to found on the similar strata or reinforced to mitigate the potential for differential settlement.

As the proposed development in this area is an extension consideration should be given to issues arising from differential settlement, movement joints should be installed between the existing warehouse and proposed extension and the angle of distortion taken into consideration to ensure settlement will be within an allowable tolerance.

Area B - Abattoir

The most suitable foundations for the proposed development at the abattoir are also considered to be pads constructed within the firm to stiff gravelly cobbly Clay at a minimum depth of 1.0m bgl. It is recommended that foundations are deepened through the Made Ground deposits.

Preliminary foundation design has been undertaken by calculation and a safe allowable bearing capacity of 125kN/m² is provided for ultimate state design for a 1.5m wide pad footing constructed within the natural Clay at a depth of 2.0m bgl.

Using the above pressures, settlement criteria of 25mm will not be exceeded and Serviceability Limit State conditions will be satisfied. If variable strata are encountered at the base of foundation excavations, then foundations should be deepened to found on the similar strata or reinforced to mitigate the potential for differential settlement.

Construction Requirements

If the ground conditions encountered during the construction phase differ significantly to the conditions encountered during the Ground Investigation, work should cease and Groundtech Consulting contacted for further advice.

During the construction phase supervision should be on a continuous basis to check the design assumptions are correct and construction conforms to design in accordance with EC7. Supervision should include inspections, Control Ground Investigations and monitoring by Groundtech Consulting.

7.5 Building Near Trees

Foundation excavations will encounter cohesive strata in the vicinity of existing, proposed or recently removed trees, foundations should be adjusted in full accordance with appropriate Guidance. Recently removed semi-mature to mature trees have been identified alongside the boundaries of the Area B and foundations may be in the area of influence.

All foundations should be deepened below roots of greater than 5mm diameter during excavations for footings. The clay is of a low to moderate volume change potential.

A survey of all trees and hedges on the site and within 30m of the site boundary should be undertaken to identify tree species, locations and heights. This information will be required in order to assess the effects of trees on the cohesive strata and inform a foundation schedule.

Where foundation depths due to trees already present or recently removed exceeds 1.5m there is a possibility for heave to occur on removal of the tree. Guidance states that in areas where volume change potential is medium, the void dimension against the side of foundations should be 25mm.

7.6 Floor Slabs

Greater than 600mm of Made Ground is present beneath the site and therefore a suspended floor slab is recommended.

Suspended in-situ concrete ground floors with a minimum void of 100mm in thickness should be utilised where heave can occur in accordance with current guidance.

7.7 Construction

Instability of the Made Ground is a possibility and should be considered in the groundworks method statements.

The natural ground is also considered to be unstable due to the cobble and boulder content present, increasing with depth. Additional volumes of concrete may be required due to foundation excavations being oversized.

Tracked high specification heavy plant is recommended to maintain the build programme. Breaking equipment may also be required locally to penetrate obstructions identified by the Ground Investigation.

Groundwater was not encountered during the Ground Investigation however it has been recorded in the standpipes during the monitoring period. Additionally, a spring has been encountered nearby site and therefore groundwater is present at shallow depths, which is a potential constraint if encountered during groundworks/construction.

7.8 Concrete Classification

Made Ground

Water soluble sulphate testing was undertaken on eight samples of the Made Ground. The range of soluble sulphate (SO_4) recorded is 17.1mgl/l to 1457.1mg/l. Associated pH values ranged between 6.93 and 9.23 indicating slightly alkaline conditions.

For a dataset of five to nine results, the mean of the highest two of the sulphate test results and the mean of the lowest two pH results should be taken as the characteristic value. The characteristic water soluble sulphate value is 1440mg/l and the characteristic pH value is 7.26.

Natural Strata

Water soluble sulphate testing was also undertaken on seven samples of the natural ground. The range of soluble sulphate (SO_4) recorded is 6.6mg/l to 94.0mg/l. Associated pH values ranged between 6.42 and 7.62 indicating slightly acidic conditions.

For a dataset containing five to nine results, the mean of the highest two of the sulphate test results and the mean of the lowest two pH results should be taken as the characteristic value. The selected characteristic sulphate value is 69mg/l and the pH value is 6.7.

Groundwater is considered to be static due to the natural ground being cohesive and therefore impermeable.

The results of laboratory pH and sulphate content indicate that ACEC Class AC-1s and sulphate class DS-2 conditions prevail in the Made Ground soils with ACEC Class AC-1 and sulphate class DS-1s accordance with BRE Special Digest 1 "Concrete in aggressive ground" 2005. The specific concrete mixes (the Design Concrete Class) to be used on site will be determined by the site specific concrete requirements in terms of the durability and structural performance. These are assessed in terms of the Structural Performance Level (SPL) and any need for Additional Protective Measures (APM) detailed in Part D of BRE Special Digest 1 with further guidance in Pt E and F.

7.9 Highway Design

CBR values of 2 to 3% are likely to be achieved in natural cohesive soils for pavement design purposes, unless proven otherwise by in-situ testing at sub-base level by a specialist geotechnical engineer. Some reengineering of the subgrade is required prior to highway construction to achieve the required design CBR value.

Untreated Made Ground should be assumed to have a CBR value of <2.5%, unless proven otherwise. Highways Agency document HD25 'Interim Advice Note 73/06 Revision 1' (2009) states that where a subgrade has a CBR value lower than 2.5%, it is considered unsuitable support for a pavement foundation since it would tend to deform under construction traffic, and must be improved.

Where highways are proposed in areas underlain by Made Ground, it is recommended that Made Ground to a depth of 1.0m below subgrade level is excavated, sorted and classified in accordance with Series 600 (Earthworks) of the Highways Agency "Specification for Highways Works". Following the above, any suitable material which can be used as part of highway construction shall be compacted in accordance with the earthworks specification.

The soils are considered to frost susceptible due to the fines content, highway construction should be a minimum thickness of 450mm to mitigate against the risk.

7.10 Soil Percolation Testing

Soil percolation testing was not within the scope of the works of this Investigation, however the use of SuDS drainage within the natural ground is unlikely to be a viable option at the site due to the presence of impermeable cohesive deposits underlying both areas of site which possesses poor drainage properties.

If SuDS drainage is to be considered, soil infiltration testing should be carried out in accordance with BRE Digest 365.

7.11 Overall Stability

Two slopes are present alongside the eastern and western site boundary of Area B (Abattoir) which could pose a potential issue to stability.

Alongside the western boundary an upwards slope of c.1.0m is present from the abattoir towards Lon Car Darbi. At this position, an eco-screening layer is proposed and stability is not considered a significant risk due to the height of the wall and the distance of the proposed workshop.

Along the eastern boundary, a c.1.5m slope trends downwards into an embankment, the crest of this slope is located approximately 1.5m east of the proposed warehouse and offices. Foundations should be constructed to ensure that their zone of influence is outside the area of the embankment and the slope is not surcharged by the proposed development.

8.0 LAND QUALITY

8.1 Geo-Environmental Testing Results - Soils

Eighteen samples of Made Ground and natural strata have been tested for a range of relevant Contaminants of Concern. In accordance with LCRM, a Generic Quantitative Risk Assessment (GQRA) has been undertaken to determine the significance of the concentrations as derived through Geo-Environmental analysis.

The GQRA process comprises the comparison of the actual concentrations measured on site with Generic Assessment Criteria (GACs) for the protection of human health.

The GACs used for the assessment of soil concentrations have been derived using the CLEA model. The GACs used and their ranking of importance are listed below:

- Soil Guideline Values (SGVs) which demonstrate minimal risk,
- LQM/CIEH S4ULs which use the same toxicological data as the SGVs but different exposure criteria.
- C4SLs which demonstrate low risk.

In deriving the GACs for use on Brownfield sites we have assumed a 1% Soil Organic Matter, unless the results indicate otherwise.

The proposed end-use for the site is a commercial development at both areas and we have therefore undertaken the GQRA on the basis that the proposed development site falls under the Commercial land-use scenario as defined in SR3 (EA, 2009b).

The strata or sources of contamination targeted by the laboratory testing scheduled is summarised in the table below:

Skipyard (Area A)

Strata	Number	Locations
Granular Made Ground (Population 1)	6	WS13 – WS18

Abattoir (Area B)

Strata	Number	Locations
Granular Made Ground (Population 1)	2	WS03, WS06
Made Ground Topsoil	3	WS05, WS07, WS08
Natural Clay	7	WS01, WS02, WS04, WS09, WS10, WS11, WS12

A summary of the Geo-Environmental Testing results is presented below and the GQRA screening values are presented in *Appendix 11*:

Metals							
Contaminant	Range (mg/kg)	Screening Value (mg/kg)	Exceedances	Locations			
Arsenic	0.8 – 52.6	640	-	-			
Cadmium	<0.1 - 0.3	230	-	-			
Chromium	38.9 – 131.1	8600	-	-			
Hexavalent Chromium	<0.3	49	-	-			
Copper	10 - 54	68000	-	-			

GROUNDTECH

Lead	<5 – 355	2300	-	-
Mercury	<0.1 - 0.3	26	-	-
Nickel	11.3 – 31.3	1800	-	-
Selenium	<1-2	13000	_	_
Zinc	36 - 118	730000	_	
Line		tic Hydrocarbons (PAHs)		
Contaminant	Range (mg/kg)	Screening Value (mg/kg)	Exceedances	Locations
Naphthalene	<0.04-0.4	190	-	-
Acenaphthylene	<0.03-0.3	83000	-	_
Acenaphthene	<0.05-0.59	84000	-	-
Fluorene	<0.04-0.55	63000	_	-
Phenanthrene	<0.03-3.98	22000	_	_
Anthracene	<0.04-0.83	520000	_	_
Fluoranthene	<0.03-3.68	23000	_	
Pyrene	<0.03-3.86	54000		
Benzo(a)anthracene	<0.06-2.14	170		
			_	-
Chrysene	<0.02-2.07	350	-	-
Benzo(b)fluoranthene	<0.05 - 4.02	44	-	-
Benzo(k)fluoranthene	<0.02 - 1.57	120	-	-
Benzo(a)pyrene	<0.04-3.25	1200	-	-
Indeno(123cd)pyrene	<0.04-2.46	35	-	-
Dibenzo(ah)anthracene	<0.04-0.49	500	-	-
Benzo(ghi)perylene	<0.04-2.24	3900	-	-
		VG - Aliphatics		
Contaminant	Range (mg/kg)	Screening Value (mg/kg)	Exceedances	Locations
>C5-C6	<0.10	3200	-	-
>C6-C8	<0.10	7800		-
>C8-C10	<0.10	2000		-
>C10-C12	<0.20	9700		-
<i>>C12-C16</i>	<4.00	59000		-
>C12-C16 >C16-C21	<4.00 <7.00	59000		-
>C16-C21	<7.00	1600000		
>C16-C21 >C21-C35	<7.00 <7.00 <19.00	1600000 1600000		
>C16-C21 >C21-C35	<7.00 <7.00 <19.00	1600000 1600000 n/a	Exceedances	- - - Locations
>C16-C21 >C21-C35 Total aliphatics C5-35	<7.00 <7.00 <19.00 TPH CV	1600000 1600000 n/a /G - Aromatics	Exceedances	- - - Locations -
>C16-C21 >C21-C35 Total aliphatics C5-35 Contaminant	<7.00 <7.00 <19.00 TPH CV Range (mg/)	1600000 1600000 n/a /G - Aromatics Screening Value (mg/kg)	Exceedances -	- - - Locations -
>C16-C21 >C21-C35 Total aliphatics C5-35 Contaminant >C5-EC7	<7.00 <7.00 <19.00 TPH CV Range (mg/) <0.10	1600000 1600000 n/a /G - Aromatics Screening Value (mg/kg) 26000	Exceedances - -	- - - Locations - -
>C16-C21 >C21-C35 Total aliphatics C5-35 Contaminant >C5-EC7 >EC7-EC8	<7.00 <7.00 <19.00 TPH CV Range (mg/) <0.10 <0.10	1600000 1600000 n/a /G - Aromatics Screening Value (mg/kg) 26000 56000	Exceedances - - - -	- - - Locations - - - -
>C16-C21 >C21-C35 Total aliphatics C5-35 Contaminant >C5-EC7 >EC7-EC8 >EC8-EC10	<7.00 <7.00 <19.00 TPH CW Range (mg/) <0.10 <0.10 <0.10	1600000 1600000 n/a /G - Aromatics Screening Value (mg/kg) 26000 56000 3500	Exceedances - - - - -	- - - Locations - - - - -
>C16-C21 >C21-C35 Total aliphatics C5-35 Contaminant >C5-EC7 >EC7-EC8 >EC8-EC10 >EC10-EC12 >EC12-EC16	<7.00 <7.00 <19.00 TPH CW Range (mg/) <0.10 <0.10 <0.10 <0.20 <4.00	1600000 1600000 n/a /G - Aromatics Screening Value (mg/kg) 26000 56000 3500 16000 36000	Exceedances - - - - - - -	- - - - Locations - - - - - - -
>C16-C21 >C21-C35 Total aliphatics C5-35 Contaminant >C5-EC7 >EC7-EC8 >EC8-EC10 >EC10-EC12	<7.00 <7.00 <19.00 TPH CW Range (mg/) <0.10 <0.10 <0.10 <0.20	1600000 1600000 n/a /G - Aromatics Screening Value (mg/kg) 26000 56000 3500 16000	Exceedances	- - - - - - - - - - - - - - - - - - -

Total aliphat aromatics((8.00 – 171.0			-
MTBE		2.00 ug/kg	7900		_
Benzer	1e <	3.00 ug/kg	95	-	-
Toluen		00–4.00 ug/kg	4400	-	-
Ethylbenz	zene <3.0	00-5.00 ug/kg	2800	-	-
m/p-Xyle	ene <5.0	00-8.00 ug/kg	3200	-	-
o-Xyler	ne <3.0	00-4.00 ug/kg	2600	-	-
		Other	S		
Organic M	atter		<0.2 - 5	5.4	
рН			5.89 – 10	0.20	
		Asbestos S	creen		
Position	Depth (m bgl)	Result		Quantification	
WS01	0.20	None Detecte	ed	-	
WS02	0.50	None Detecte	ed	-	
WS03	0.50	None Detecte	ed .	-	
WS04	0.80	None Detecte	ed	-	
WS05	0.20	None Detecte	ed	-	
WS06	0.60	None Detecte	ed	-	
WS07	0.20	None Detecte	ed	-	
WS08	0.20	None Detecte	ed	-	
WS09	0.60	None Detecte	ed	-	
WS10	0.50	None Detecte	ed	-	
WS111	0.20	None Detecte	ed	-	
WS12	0.60	None Detecte	ed	-	
WS13	0.50	None Detecte	ed	-	
WS14	0.20	None Detecte	ed	_	
WS15	0.60	Chrysotile Fibre B	undles	Pending	
WS16	0.5	None Detecte	ed	-	
WS17	0.30	None Detecte	ed	-	
WS18	0.60	None Detecte	^o d	-	

8.2 Generic Quantitative Risk Assessment - Soils

Made Ground has been encountered beneath the site to depths of between 0.1m and 2.3m bgl and comprised hardsurfacing concrete/tarmac and topsoil underlain by gravelly sand with minor constituents of brick and slate. The Made Ground was typically shallower within the abattoir area.

No visual or olfactory evidence of contamination was encountered across both areas of site with the exception of black staining within the WS14 at 0.1m bgl.

No elevated contaminants of concern have been detected through laboratory testing in any of the eighteen samples screened based on the site having commercial end use.

Asbestos screening was undertaken eighteen samples from the Made Ground and natural ground and asbestos was not detected in seventeen of the samples. One sample within the granular Made Ground in TP15 in the north west of the skip yard (Area A) at a depth of 0.6m bgl tested positive for asbestos in the form of chrysolite fibre bundles. Quantification results are currently pending and will be included in a revision to this document.

No evidence of animal remains were found during the investigation at the abattoir area.

The electricity substation situated within the abattoir area (Area B) is dated post 1990 and is therefore not a risk of PCBs.

Good housekeeping was typically observed across the site, specifically within the skipyard. No evidence of spills or leakages was observed at the vehicle repair workshop (Area A) or the waste treatment area (Area B) due to relatively good housekeeping. The concrete slab located beneath the skipyard was observed as fully intact and underlain by a mesh net layer inhibiting migration of any contamination into the underlying Made Ground and natural soils. The concrete slab at the abattoir also remained undamaged.

8.3 Permanent Ground Gases

A single ground gas monitoring visit has been carried out to date on 13th April 2022.

No concentrations of methane (CH₄) have been recorded within the boreholes, however detectable levels of carbon dioxide (CO₂) were recorded within the standpipes up to a value of 9.6% v/v together with depleted oxygen (O₂) concentrations of 0.0% v/v.

No positive gas flow rates were recorded and the atmospheric pressure was 1009mb. The monitoring was carried out during a period of rising barometric pressure.

Groundwater was recorded within five of the seven standpipes from depths of between 0.63m and 1.4m bgl and were all recorded within the response zone of the standpipes.

Characterisation of the Gas Screening Value (GSV)

In accordance with CIRIA Report C665, November 2007 it is felt that an adequate risk assessment can be undertaken based on the following limiting factors:

- The proposed development has been considered as low sensitivity based on the site being developed commercially (Table 5.5 Typical/Idealised frequency and period of monitoring, after Wilson et al, 2005).
- The risk associated with the generation potential of a source is considered as moderate, (assessment based on the environmental setting).
- No positive flow have been recorded to date (Table 8.5 Modified Wilson & Card classification).

Based upon the results recorded to date, in accordance with CIRIA Report C665, the risk to the site from the ground gases has been assessed by converting the results to gas screening values (GSVs), calculated by multiplying the typical maximum gas concentrations with the recorded maximum positive flow rates. In addition, individual "hazardous gas flow rates" (Qhg) have been derived for each monitoring point. As no levels of methane have been recorded, a GSV for carbon dioxide only has been calculated.

GSV (l/hr) = max borehole flow rate (l/hr) x max gas concentration (%)

For this assessment, the maximum recorded concentration of carbon dioxide of 9.6% v/v has been used to calculate the GSV together with a gas flow rate of 0.1l/hr (the limit of detection of the gas analyser).

Carbon Dioxide GSV = 0.096 (9.6%) x 0.1 = 0.0096 l/hr

In order to assess the ground gas regime beneath the site and the need to incorporate ground gas precautions, guidance was taken from CIRIA C665 'Assessing risks posed by hazardous ground gases to buildings'. Based on the site being developed for a commercial end use, the Wilson and Card method has been used to carry out the assessment.

When considering the results in accordance with CIRIA C665 (Section A Development and Table 8.5 – Modified Wilson and Card Classification) it can be seen that the GSV value for carbon dioxide is below the assessment GSV of 0.07 l/hr and falls within Characteristic Situation 1. However, a single elevated concentration of 9.6% v/v has been recorded (WS06) within the footprint of the proposed warehouse in the abattoir (Area B) due to Made Ground being present which has potential to generate ground gas. At this stage the abattoir site has been classified as CS2 until further monitoring visits have been undertaken. It may be possible to downgrade the site to CS1 if carbon dioxide concentrations at this location reduce over the monitoring period.

Abattoir (Area B)

Characteristic Situation 2

The proposed development is classified as a Building Type C in accordance with BS 8485:2015 and the abattoir (Area B) falls in CS2 in accordance with Table 2 of the above guidance and gas protection measures will be required within the warehouse based on the dataset to date. A minimum of two out of three points of protection will be required in accordance with Table 8.6 - Typical scope of gas protective measures from CIRIA C665.

Skipyard (Area A)

Characteristic Situation 2

The proposed development is classified as a Building Type C in accordance with BS 8485:2015 and the skipyard (Area A) falls in CS1 in accordance with Table 2 of the above guidance and gas protection measures will not be required within the warehouse extension at the skipyard based on the initial ground gas monitoring visit.

Radon

The site is located in an area where no radon precautions are required within proposed developments.

8.4 Revised Pollution Linkage Assessment

A revised pollution linkage assessment has been undertaken based on the findings of the Ground Investigation in accordance with CIRIA C552 to identify any realistic pollution linkages in order to quantify the risks to human health and controlled waters. An Illustrative CSM is presented on *GRO-22013-PO6*.

Human Health Pollution Linkage Assessment

- The table below represents the second stage in the land quality risk assessment process **the Generic** Quantitative Risk Assessment.
- In order for a development site to be deemed 'suitable for use' the level of risk needs to be reduced to an acceptable level low to negligible risk. The purpose of each stage of risk assessment is to establish if there is a requirement for additional stages of assessment in order to have sufficient confidence to support a risk characterisation or remedial action.

	Conceptual Site Model					Generic Quantitative Risk Assessment			
PL	Potential Source	Pollution Linkage	Likelihood	Consequence/ Severity	Risk Rating	Rationale and Action			
						Pollution Linkage 1 refers to proposed site users coming into contact with contaminated soils on the site.			
PL1					and was generally granular with minor constituents of slate and brick. No visual or olfactory evidence of contamination was observed during the Gra	Made Ground has been encountered across the site to a maximum depth of 2.3m bgl and was generally granular with minor constituents of slate and brick.			
	Contaminated Soils	Ingestion of soil and dust. Dermal contact	Unlikely	Medium					
		with soil.				Geo-Environmental testing of soils has detected no elevated concentrations of contaminants above generic screening values for a commercial end use.			
						A single concentration of asbestos was recorded within one of the 18 samples screened and was located beneath the skip yard (Area A). Asbestos containing Made Ground is localised and will be beneath hardsurfacing, no pollution linkage is present.			

GWYNEDD SKIPS GRO-22013-3516

		Conceptual Site Mo	del		Generic Quantitative Risk Assessment			
PL	Potential Source	Pollution Linkage	Likelihood	Consequence/ Severity	Risk Rating	Rationale and Action		
						No source of contamination has been identified in Area B and no pollution linkage is considered to exist.		
PL2	Contaminated Soils	Inhalation of vapour.	Low likelihood	Medium to Severe	Low	No visual or olfactory evidence of contamination was identified during the investigation. Laboratory testing has not recorded any elevated levels of hydrocarbons based on the site being developed commercially with the majority of results falling below laboratory detection limits. No pollution linkage is considered to exist.		
PL3	Contaminated Soils	Inhalation of soil dust by adjacent site users.	Unlikely	Medium	Low	Pollution Linkage 3 relates to contamination on the subject site affecting adjacent site users. No mobile contamination has been recorded through laboratory testing or observed during the Ground Investigation. Therefore, a plausible pollution linkage is not considered to exist.		
PL4	Contaminated Soils	Attacking potable water supply pipe.	Low Likelihood	Medium	Low to Moderate	Pollution Linkage 4 refers to the possible contaminants permeating potable water pipes and consumption by the future site end users of the tainted water supply. Made Ground is present at installation depth, it is likely that existing pipes are to be used for the extension, a water company risk assessment is recommended.		

		Conceptual Site Mo	del			Generic Quantitative Risk Assessment			
PL	Potential Source	Pollution Linkage	Likelihood	Consequence/ Severity	Risk Rating	Rationale and Action			
PL5	Ground Gas	Migration and accumulation of ground gas in internal spaces.	Likely	Medium to Severe	Moderate	Made Ground has been encountered to a maximum depth of 2.3m bgl. Interim ground gas monitoring results place the site within CS2 due to a single elevation of CO ₂ (9.6%v/v) within the abattoir (Area B), therefore gas precaution measures may be required. The skip yard (Area A) is considered to fall within CS1 and no gas precaution measures are required based on the interim results. This is subject to the completion of the gas monitoring programme. The site is not within an area requiring radon precautions within foundations.			

Controlled Waters Pollution Linkage Assessment

	Qualitative Risk Assessment	Generic Quantitative Risk Assessment		Detailed Quantitative Risk Assessment or Remedial Action	•	The table below represents the second stage in the land quality risk assessment process – Generic Quantitative Risk Assessment . In order for a development site to be deemed 'suitable for use' the level of risk needs to be reduced to an acceptable level - low to negligible risk. The purpose of each stage of risk assessment is to establish if there is a requirement for additional stages of assessment in order to have sufficient confidence to support a risk characterisation or remedial action.
		Conceptual Site M	odel			Generic Quantitative Risk Assessment
PL	Potential source	Pollution linkage	Likelihood	Severity	Level of risk	Rationale
PL6	Contaminated Soils	Impaction of groundwater from soil contamination (diffuse and point). Impaction of groundwater from groundwater plume.	Unlikely	Mild	Very Low	Made Ground has been encountered beneath both sites to a maximum depth of 2.3m bgl due to the historical industrial development. Mobile contamination was not identified through the Ground Investigation and very low concentrations of total TPH were recorded. Groundwater was not encountered within any of the boreholes. Natural Clay deposits underlie both sites which will have limited the downward migration of any potential contamination. The Undifferentiated Secondary Aquifers are not considered to be a sensitive resource. The proposed development commercial/industrial which encompasses the entirety of the site with hardsurfacing. Therefore, a pollution linkage is not considered to exist as a source of mobile contamination has not been identified.

		Conceptual Site M	odel		Generic Quantitative Risk Assessment		
PL	Potential source	Pollution linkage	Likelihood	Severity	Level of risk	Rationale	
PL7	Contaminated Soils	Migration of soil and groundwater contamination impacting surface waters.	Unlikely	Mild	Very Low	Pollution Linkage 7 refers to the impaction of Afon Seiont 109m south and nearby tributaries/water features. No sources of mobile contamination have been identified and a viable pollution linkage is not considered to exist.	

8.5 Outline Remedial Strategy

Soils and Groundwater

Based on the results of the Ground Investigation, no specific remedial measures are required with respect to the contaminated soils or groundwater as no elevated contaminants of concern have been recorded at the site. Asbestos has been recorded in a single location.

The site is to be covered with hardsurfacing which will effectively act as a cover system. If soft landscaping areas are proposed, a cover system comprising 300mm of suitably clean soils with a demarcation layer should be placed.

Topsoil

If required, the topsoil is considered to be suitable for reuse as part of a commercial development based on the results of the three topsoil samples tested. Additional testing is recommended prior to reuse once the material has been stripped and stockpiled.

Ground Gas

Preliminary ground gas monitoring results place the abattoir (Area B) in CS2 due to a single elevation of carbon dioxide being recorded within WS06 beneath the footprint of the proposed warehouse, and gas precaution measures may be required as part of the proposed development.

The monitoring results from the skip yard (Area A) place it into CS1 based on the monitoring undertaken to date, as the development in this area is an extension it is recommended that as a minimum the precautions present in the existing building are also incorporated into the proposed extension.

The gas monitoring programme is ongoing and the level of protection will be confirmed upon completion.

The site does not lie within an area where radon precautions are required for foundations.

Watching Brief and Regulatory Liaison

A watching brief is recommended during future ground works for any previously unseen contamination. If identified, work should cease in that area and advice sought from Groundtech Consulting Limited.

Approval from the regulators should be obtained prior to the development commencing to avoid any delays at the construction stage. A Remedial Specification is recommended which will include a protocol for dealing with the risk from asbestos in soils.

8.6 Asbestos in Soils

Asbestos has been encountered within one of the eighteen samples screened and was present within the gravel of slate and brick of WS14 at 0.6m bgl. The asbestos is likely to be present at trace quantity depending on the quantification of the sample. The JIWG receptor tool characterises the risk as negligible.

The JIWG receptor results are present in Appendix 12.

The presence of asbestos within the ground will require, a safe system of work to be set up on site to deal with the asbestos risk from the made ground. This may include but be not limited to:

• The use of qualified personnel where required.

- Careful segregation of stockpiles on site.
- Defining transport routes.
- Cleaning down of machinery in designated areas.
- Decontamination unit for ground workers.
- Damping down of soils to prevent dust migration.

All such works will need to be agreed with the regulatory bodies (HSE, LA)

8.7 Health and Safety - Construction and Ground Workers

During the reclamation and construction phases of the site development it will be necessary to protect the health and safety of site personnel. The risk to construction and ground workers is assessed in the table below:

PL Ref	Potential Source	Pollution Linkage	Likelihood	Severity	Level of Risk
PL8	Made Ground	Ingestion, direct contact, inhalation of dusts.	Unlikely	Medium	Low
PL8	Asbestos	Ingestion, direct contact, inhalation of dusts.	Unlikely	Medium	Low

No elevated contaminants have been recorded, asbestos has been detected at a single location within the north western section of the skip yard (Area A). The risk should be communicated to ground workers through a site induction and information should be made available through site noticeboards.

General guidance on these matters is given in the Health and Safety Executive (HSE) document "Protection of Workers and the General Public during the Redevelopment of Contaminated Land". In summary, the following measures are suggested to provide a minimum level of protection:

- All ground workers should be issued with the relevant protective clothing, footwear and gloves. These protective items should not be removed from the site and personnel should be instructed as to why and how they are to be used.
- Hand-washing and boot-washing facilities should be provided.
- Care should be taken to minimise the potential for off-site migration of contamination by the provision of dust suppression control and wheel cleaning equipment during the construction works.
- Good practices relating to personal hygiene should be adopted on the site.
- The contractor shall satisfy the Health and Safety Executive with regard to any other matters concerning the health, safety and welfare of persons on the site.

8.8 Waste Classification by Assessment

We have reviewed the testing results and inputted them into the HazWasteOnline model which allows users to code and classify waste as defined in the EWC (European Waste Catalogue 2002) based on EC Regulation 1272/2008 on the Classification, labelling and packaging of substances and mixtures (CLP) and latest Environment Agency guidance (WM3 "Guidance on the classification and assessment of waste (1st edition 2015)-Technical Guidance").

This is a useful tool as waste producers have the legal responsibility to classify any waste they produce.

Eighteen samples were tested to assess whether they contained any contaminants in the hazardous range when screened against assessment criteria within WM3. The results are in the Waste Classification Report presented in *Appendix 13*.

Based on the assessment tool the Made Ground and natural soils have been classified as *Non-Hazardous*. The asbestos is unlikely to exceed the hazardous threshold of 0.1%, subject to the results of the quantification.

8.9 Waste Acceptance Criteria (WAC) Results

Waste Acceptance Criteria (WAC) testing was outside the scope of this investigation and the guidance given below is general.

The Landfill Directive (Directive 1999/31/EC on the landfilling of waste) led to the establishment of a methodology for classifying wastes. Wastes can only be accepted at a landfill if they meet the relevant Waste Acceptance Criteria (WAC) for that type of landfill. There are three different WAC, these are for:

- Inert waste
- Non–Hazardous waste
- Hazardous waste

Wastes should first be classified based on their total concentrations as detailed in the previous section. WAC testing is then required if the end disposal route is a landfill.

The possibility of automatic inert classification of the natural soils should be explored in accordance with Section 4.3 of the EA guidance document. The Council Decision includes a list of wastes in Section 2.1.1 of the document that are assumed to be inert and therefore acceptable at a landfill for inert waste without testing, this is the case if:

- They are single stream waste of a single waste type (although different waste types from the list may be accepted together if they are from a single source) <u>and</u>
- There is no suspicion of material or substances such as metals, asbestos, plastics, chemicals, etc to an extent which increases the risk associated with the waste sufficiently to justify contamination and they do not contain other their disposal in other classes of landfill.

If any organic contaminated material is encountered during the construction phase, it is possible that this may be classified as hazardous and testing should be undertaken at that time.

Materials should segregated and where necessary sufficient time is allowed to further classify the material properly, including discussion with landfill sites and waste transfer stations to find the best disposal route. It is recommended that where possible that the soils could be recycled at a suitable local waste treatment plant or transfer station rather than a landfill disposal route.

The reuse of soils on the site this should be done in accordance with the CL:AIRE "Development Industry Code of Practice for the Definition of Waste" (CL:AIRE CoP). Any re-use scheme should be designed to minimise disposal costs.

After a cut and fill balance plan/volume calculation has been carried out, a U1 and T5 exemption could be registered. This will allow the use of the following soils without a waste permit or under Dow CoP MMP:

- 1,000 tonnes (c. 600m³) of non-hazardous soil
- 5,000 tonnes (c. $3,000m^3$) of natural sand and gravels.
- 50,000 tonnes (c. 25,000m³) of bituminous material to be used in roadways.
- 5,000 tonnes (c. 3,000m³) of crushed concrete / stone.

GROUNDTECH

9.0 FINAL APPRAISAL

9.1 Land Quality

Made Ground has been encountered across both sites (Area A and B) to depths of between 0.1m and 2.3m bgl and was generally granular and consistently underlain by natural cohesive clay deposits.

No elevated contaminants of concern were recorded through laboratory testing based on the site being developed commercially. Asbestos was recorded in a single location beneath the skip yard (Area A) in the form of chrysotile fibre bundles.

The proposed commercial development will be covered in hardsurfacing eliminating a pathway to site end users, therefore the risk to human health is considered to be *Low*.

No sources of mobile contamination were identified by the Ground Investigation and the risk to controlled waters is considered to be *Low*.

Preliminary ground gas monitoring results place the abattoir (Area B) within Characterisation Situation 2 and gas precaution measures may be required within the abattoir site as part of the development. The skip yard (Area A) currently falls within CS1 and no gas precaution measures are required. The level of precautions for both areas will be confirmed upon completion of the gas monitoring programme.

The Made Ground and natural soils have been classified as *Non-Hazardous* for waste disposal purposes and the topsoil is suitable for reuse as part of the development.

9.2 Ground Engineering

The most suitable foundations are considered to be pads constructed within the natural Clay deposits encountered in both areas. Foundations should be deepened through the Made Ground encountered during foundation excavations. Provisions should be made for large plant and potential over dig due to the presence of large cobbles and boulders within the founding strata.

A suspended floor slab is recommended due to their being greater than 600mm of Made Ground beneath the footprint of the proposed developments.

The results of laboratory pH and sulphate content indicate that ACEC Class AC-1s and sulphate class DS-2 conditions prevail at the abattoir (Area B) while AC-1 ad DS-1s conditions prevail at the skip yard (Area A) in accordance with BRE Special Digest 1 "Concrete in aggressive ground" 2005.

SuDS drainage is unlikely to be feasible at the site due to cohesive natural ground being encountered across the site which will provide poor drainage properties.

GROUNDTECH

9.3 Required Supplementary Investigation

The following further work is considered necessary to progress the site to construction phase:

Completion of gas monitoring programme. Issue gas assessment. Confirmatory investigation at position of workshop in abattoir (Area B) post demolition. Additional topsoil sampling if material is proposed for reuse. Demolition and Refurbishment Asbestos survey. Tree survey by qualified arboriculturist. Detailed foundation design. Confirmation of remedial recommendations with regulators.

10.0 RELEVANT INDUSTRY REFERENCES

British Standards Institution. Investigation of Potentially Contaminated sites - code of practice. BS 10175:2017.

British Standards Institution 'Code of Practice for Site Investigations' BS 5930:2015

British Standards Institution "Geotechnical investigation and testing – Identification and classification of soil" BS EN ISO 14688:2002.

British Standards Institution "*Geotechnical investigation and testing – Identification and classification of rock*" BS EN ISO 14689:2002.

BRE Report BR211 'Radon – Guidance on protective measures for new buildings' 2015 Edition.

BRE Special Digest 1: "Concrete in Aggressive Ground" 3rd Ed 2005.

CIRIA 552 "Contaminated Land Risk Assessment – A guide to good practice" 2001.

CIRIA C665 "Assessing Risks Posed by Hazardous Ground Gases to Buildings" 2016.

Wilson & Card "Proposed method classifying gassing sites" Ground Engineering 1999.

Card & Steve Wilson in "A pragmatic approach to ground gas risk assessment for the 21st Century" - CIRIA/Environmental Protection UK Ground gas seminar 2011

BS 8576:2013 'Guidance on investigations for ground gas – Permanent gases and Volatile Organic Compounds (VOCs)'

BS 8485:2015 'Code of practise for the design of protective measures for methane and carbon dioxide ground gases for new buildings'

The Hazardous Waste (England) Regulations 2005.

Environment Agency Hazardous Waste: "Guidance on the classification and assessment of waste" WM3 ver. 1 May 2015.

The National Planning Policy Framework (NPPF) March 2012

DETR. Circular 02/2000 Contaminated Land.

Environment Agency, 2009 'Using Soil Guideline Values'.

Environment Agency, 2009 'Updated Technical Background to the CLEA model'.

Environment Agency, 2009 'Human health toxicological assessment of contaminants in soil'.

Department of the Environment, 1994, CLR Report No 1 'A framework for assessing the impact of contaminated land on groundwater and surface water'.

Department of the Environment, 1994, CLR Report No 2 'Guidance on Preliminary Site Inspection of Contaminated Land'.

Department of the Environment, 1994, CLR Report No 3 'Documentary research on Industrial Sites'.

Department of the Environment, 1994, CLR Report No 4 'Sampling Strategies for Contaminated Land'.

DEFRA and the Environment Agency, 2002-2004, CLR10 'Soil Guideline Value Reports for Individual Soil Contaminants'.

DEFRA and the Environment Agency, 2004, CLR Report No 11 'Model Procedures for the Management of Contaminated Land'.

Nathanail, C. P., McCaffrey, C., Gillett, A., Ogden, R. C. and Nathanail, J.F. 2015. The LQM/CIEH S4ULs for Human Health Risk Assessment. Land Quality Press, Nottingham.

CL:AIRE, 2014 'Development of Category 4 Screening Levels for Assessment of Land Affected by Contamination'.

Water Framework Directive.

Environmental Quality Standards.

UK Drinking Water Standards: Water Supply (Water Quality) Regulations 1989 (SI 1989/1147) and Water Supply (Water Quality) Regulations

UKWIR Report 10/WM/03/21 2010 "Guidance for the Selection of Water Supply Pipes to be used in Brownfield Sites"

Health & Safety Executive, 1991. 'Protection of Workers & the General Public during the Development of Contaminated Land'.

Environment Agency & NHBC, 2000. R&D Publication 66. Guidance for the Safe Development of Housing on Land Affected by Contamination.

Environment Agency "Guidance on the classification and assessment of waste (1st edition 2015) Technical Guidance WM3"

CL:AIRE "The Definition of Waste: Development Industry Code of Practice" Version 2 March 2011.

CIRIA "Asbestos in soil and made ground: a guide to understanding and managing risks" C733 2014.

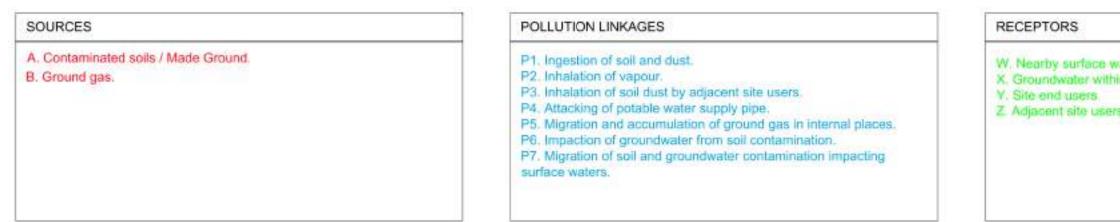
Control of Asbestos Regulations (CAR) 2012

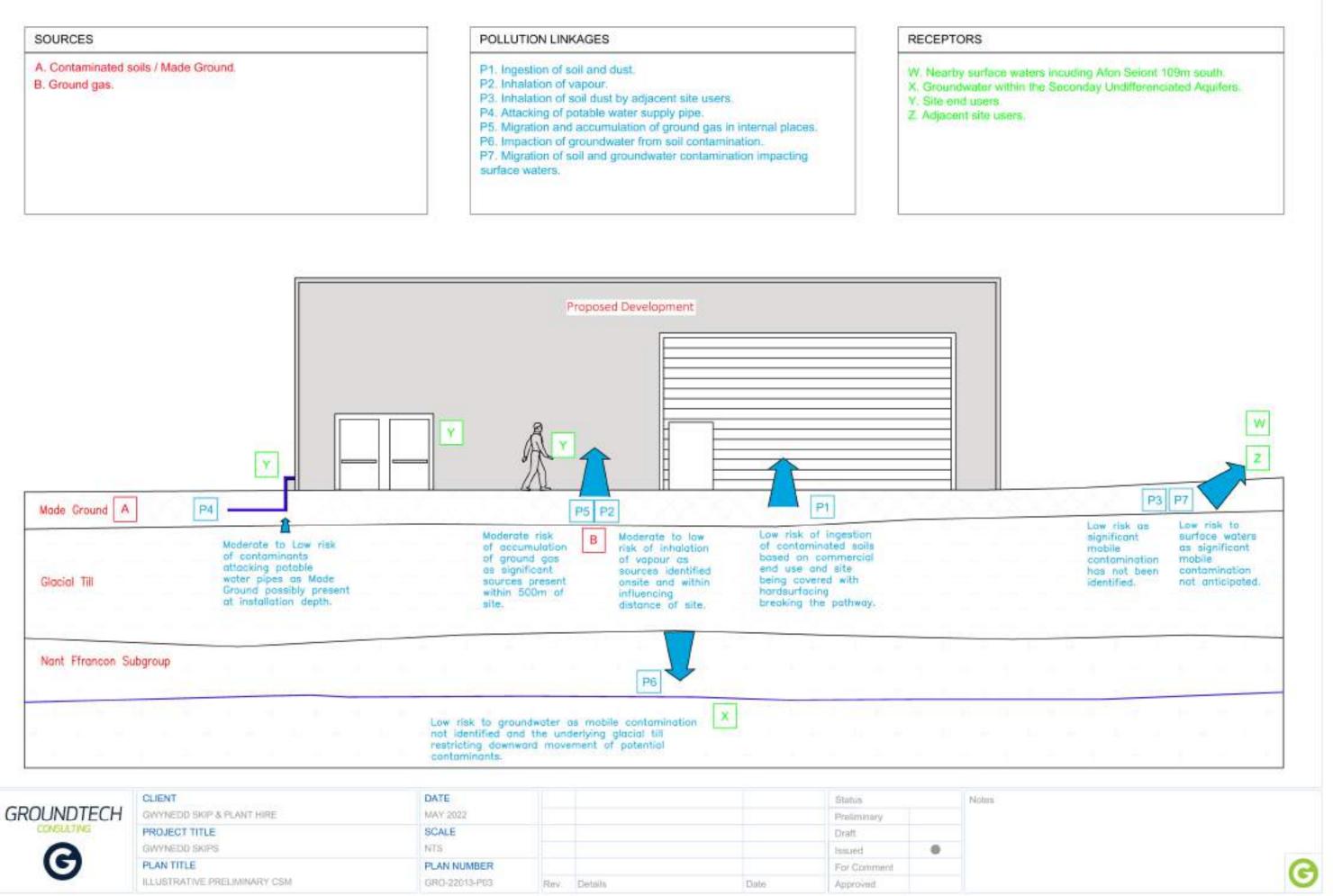
Harris, M R, Herbert, S. M, Smith, M A 'Remedial Treatment for Contaminated Land' (twelve volumes), special publications 101-112, CIRIA 1996.

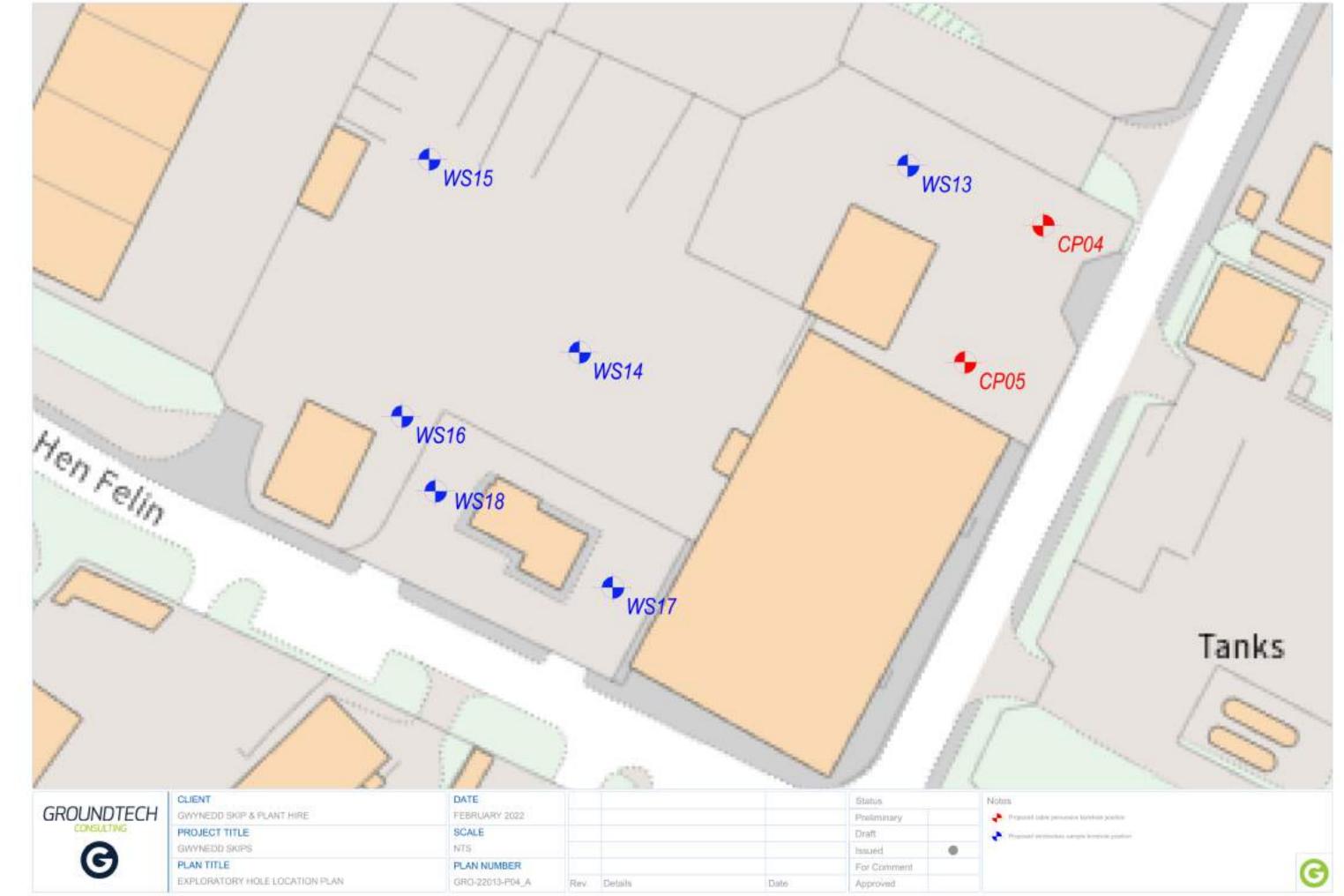
Department of the Environment. 1995. Industry Profiles - 48 separate publications available from The Stationery Office, London

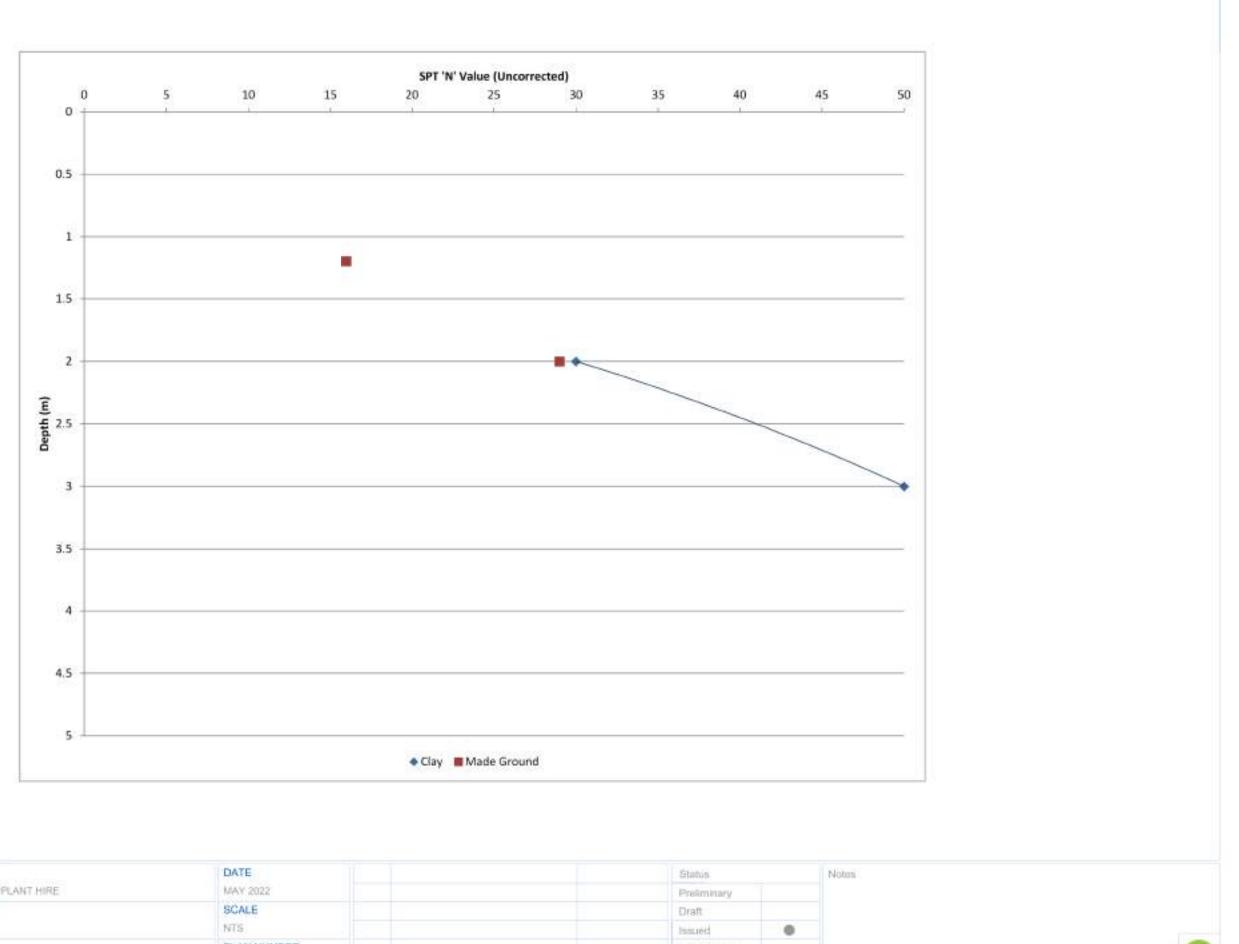
Environment Agency. R&D Publication 20. Methodology for the Derivation of Remedial Targets for Soil and Groundwater to Protect Water Resources. 1999.

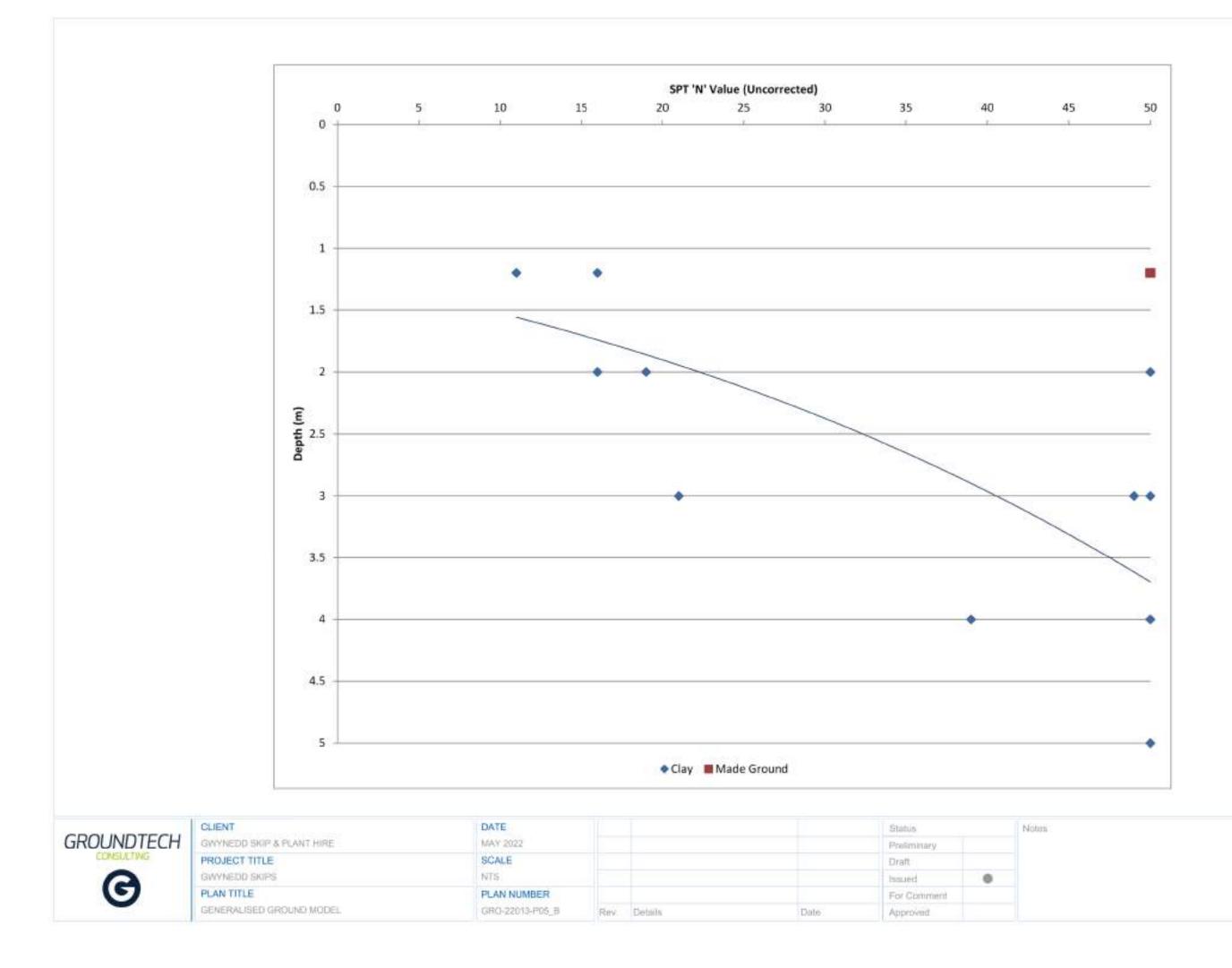
Specification for Highways Works – Series 600 Earthworks November 2016.

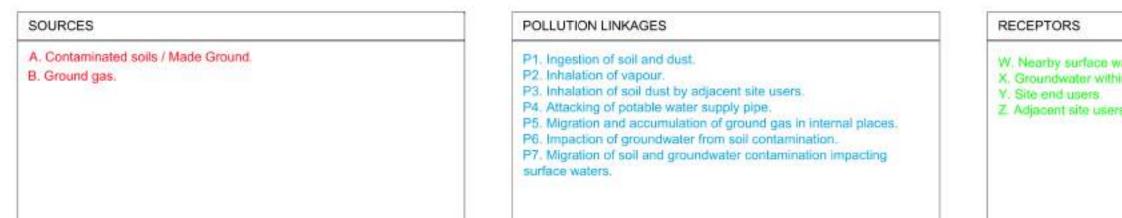



APPENDIX 1 - Plans



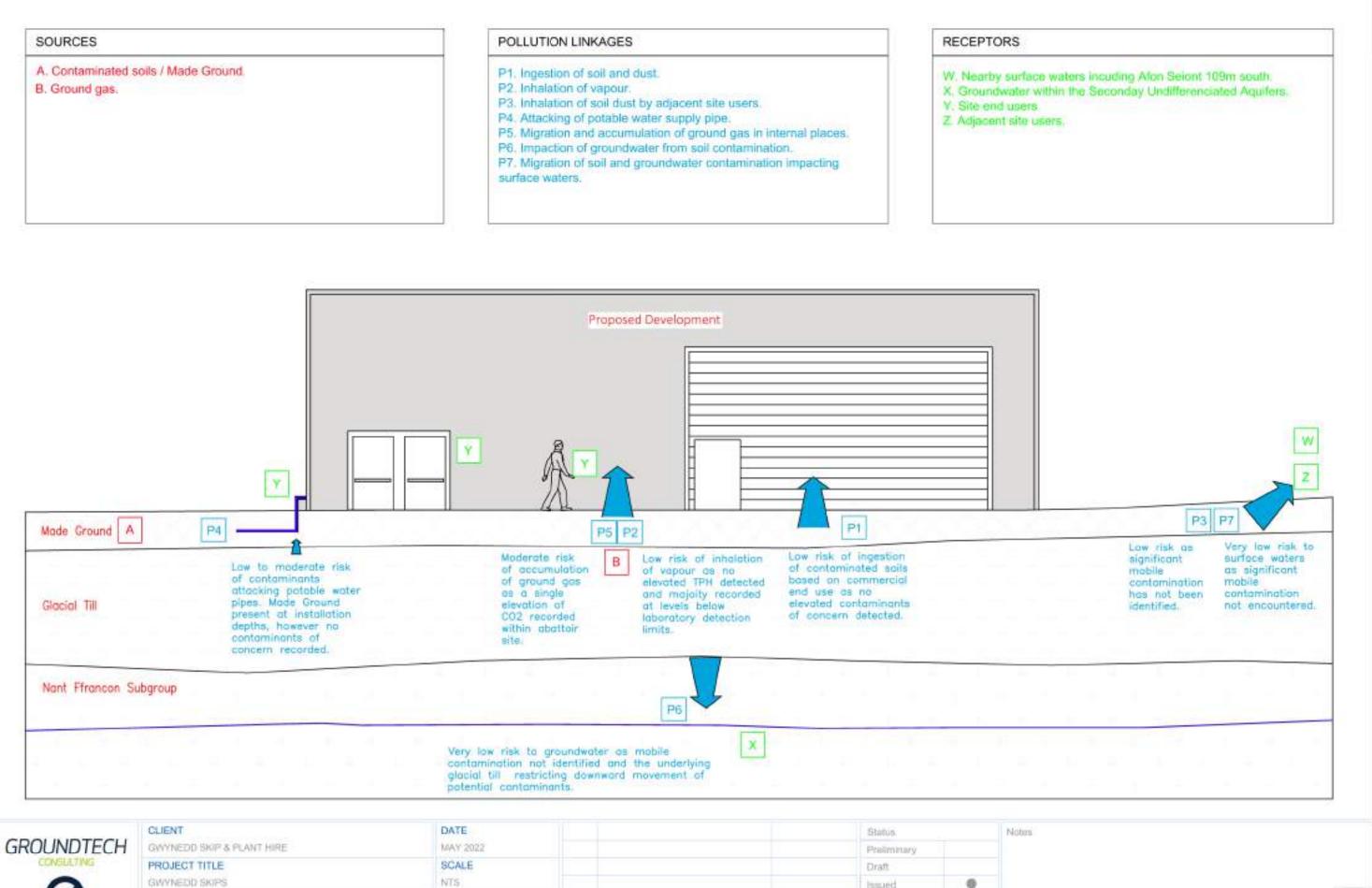





GROUNDTECH 0

	CLIENT	DATE			Status	Notes
1	GWYNEDD SKIP & PLANT HIRE	MAY 2022			Presminary	
	PROJECT TITLE	SCALE			Draft	
	GWYNEDD SKIPS	NTS			Issued	
	PLAN TITLE	PLAN NUMBER			For Comment	
	GENERALISED GROUND MODEL	GR0-22013-P05_A	Rev. Details	Date	Approved	

PLAN NUMBER


GRO-22013-P06

Rev. Details

6

PLAN TITLE

REVISED-ILLUSTRATIVE CSM

baued

Approved

Date

For Comment

APPENDIX 2 - Site Photographs

Photograph 1 – Skip yard (warehouse to right)

Photograph 2 – Skip yard

Photograph 3 – Skip yard (waste stockpile)

Photograph 4 - Skip yard waste disposal

Photograph 5 – North eastern area of Abattoir

Photograph 6 – Stockpile of recently stripped topsoil at abattoir

Photograph 7 – Abattoir

Photograph 8 – Western area of site (facing south)

Photograph 9 – Recently stripped area east of abattoir (position of proposed warehouse)

Photograph 10 – Eastern section of abattoir

Photograph 12 – Abattoir (left) and workshops (right)

Photograph 13 – Position of proposed warehouse

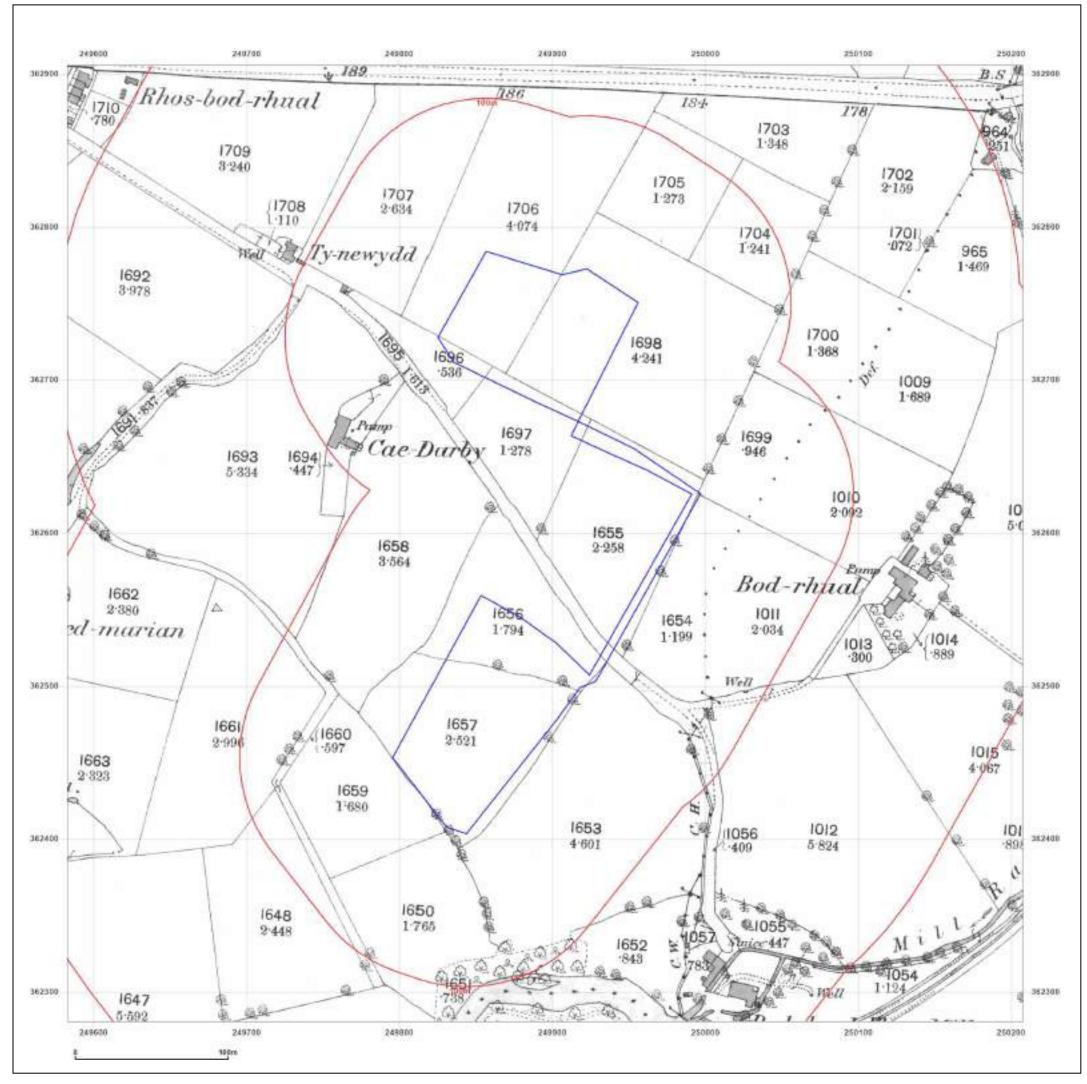
Photograph 14 – Abattoir and associated buildings

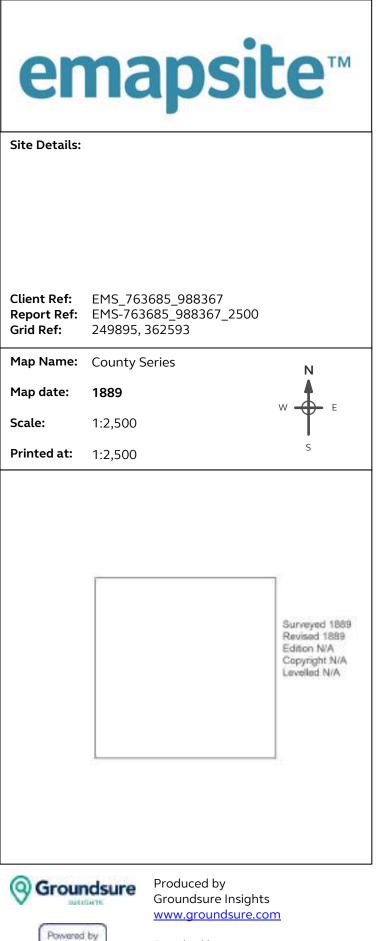

Photograph 15 – Western site boundary (Abattoir)

Photograph 16 – Northern site entrance at abattoir

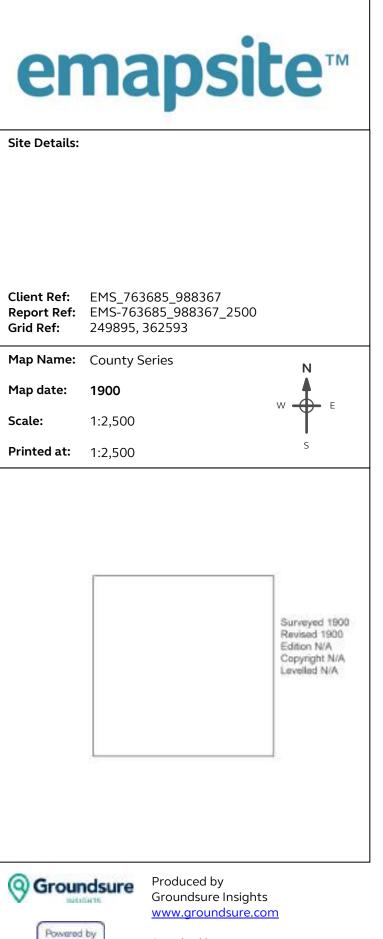
Photograph 18 – Site offices and cafe

Photograph 19 – Eastern extent of warehouse at skip yard

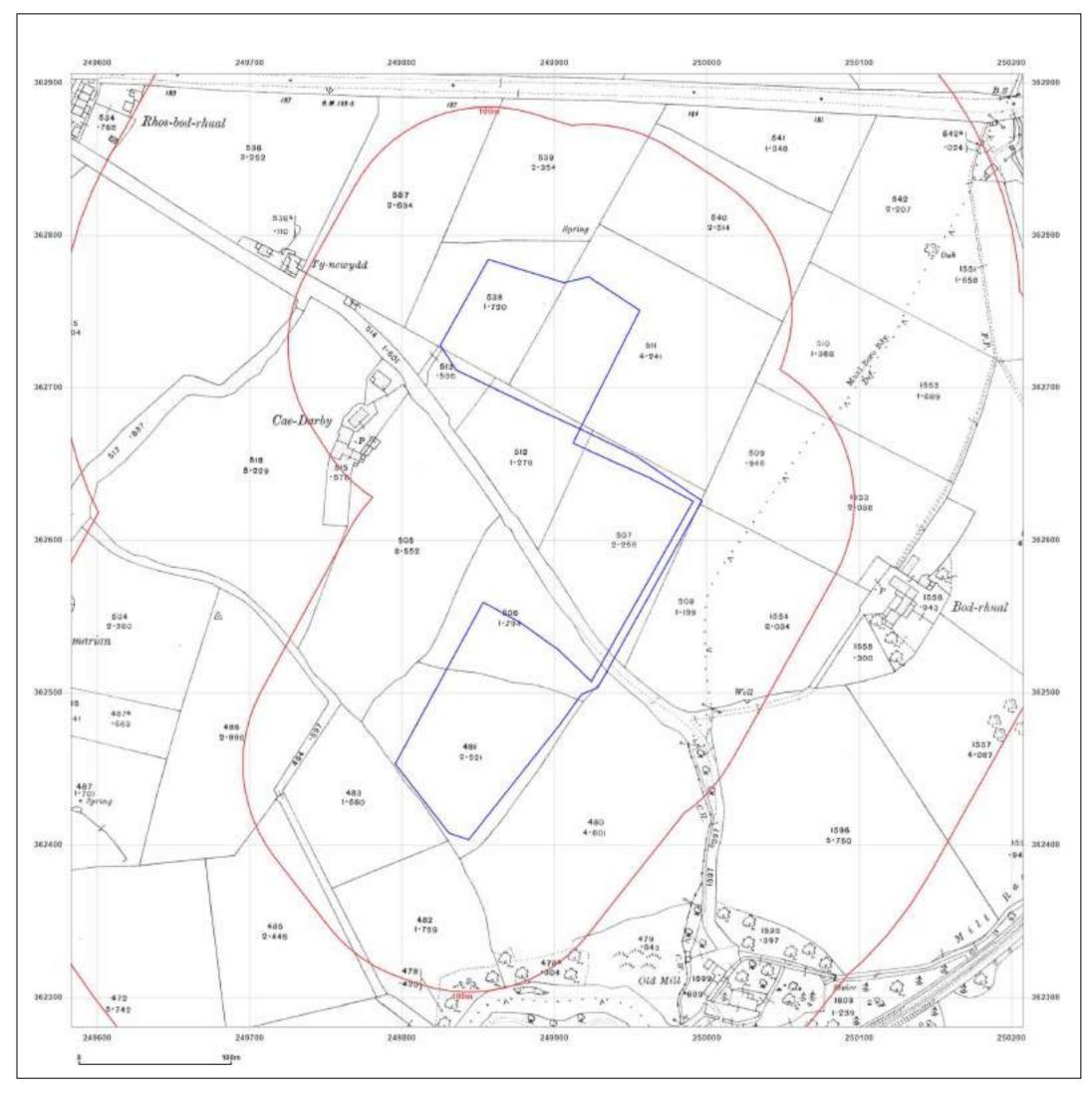


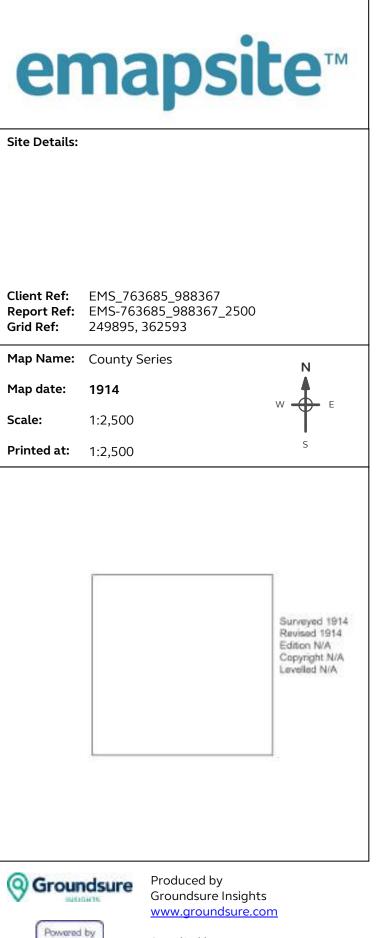

Photograph 20 – North eastern access to skip yard

APPENDIX 3 - Historical Plans

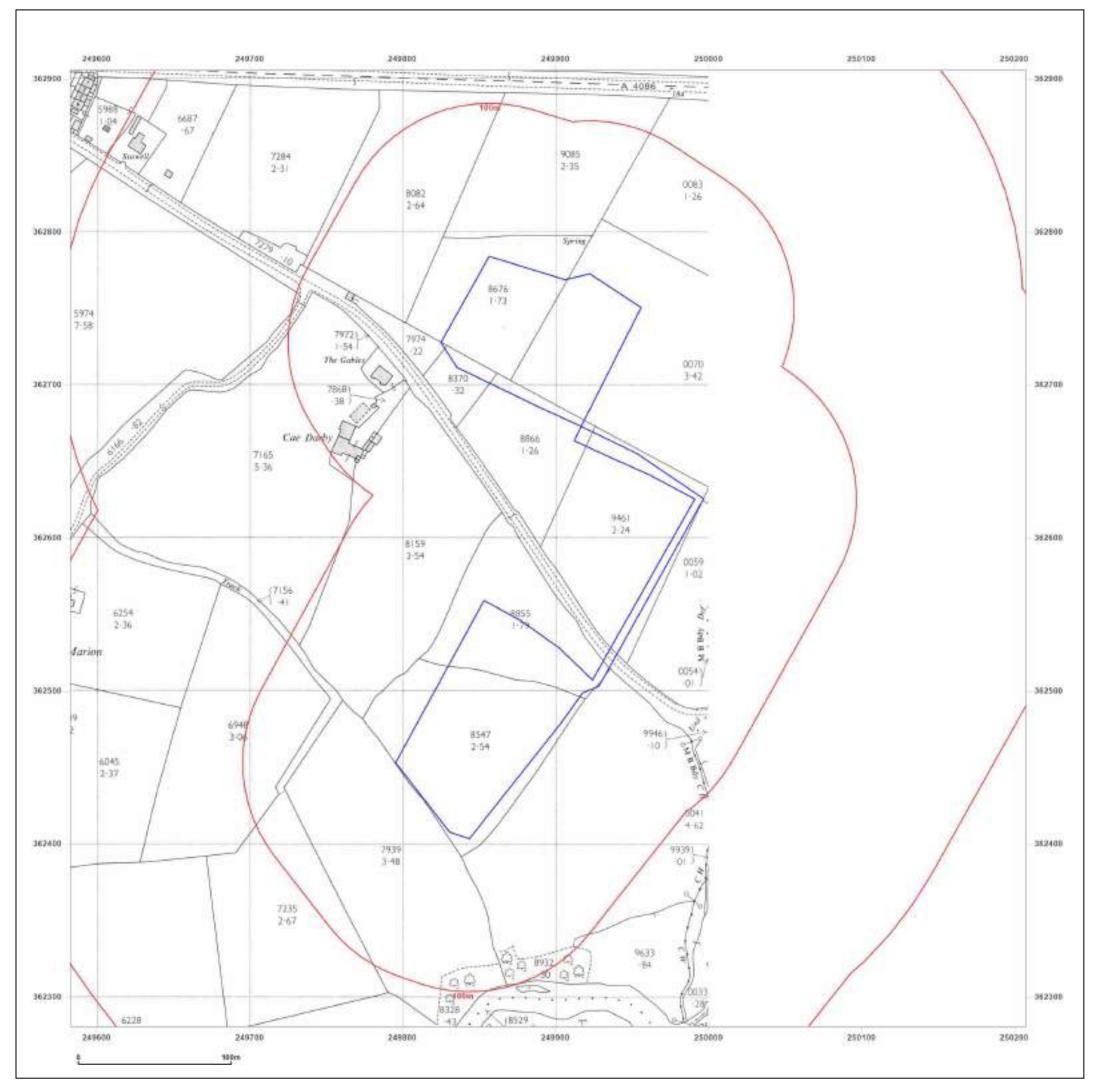


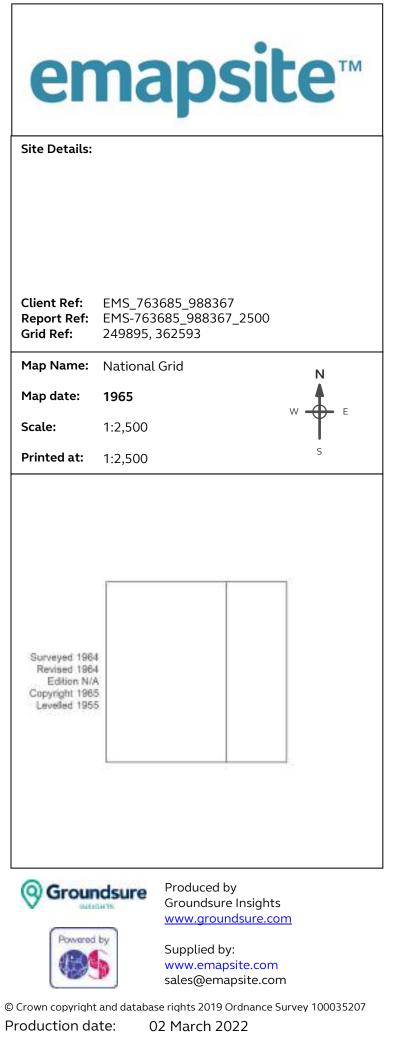
Supplied by: www.emapsite.com sales@emapsite.com

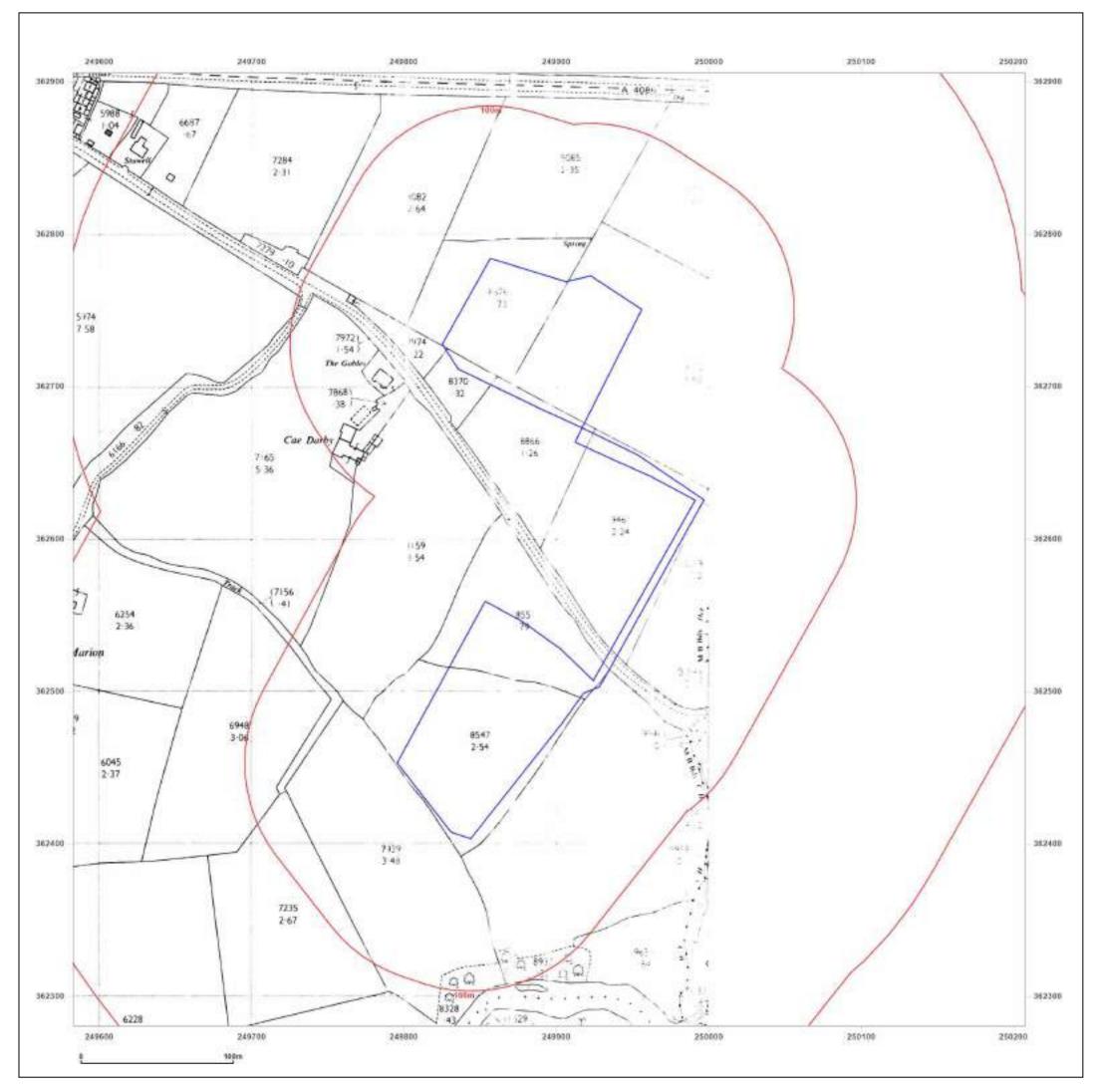

© Crown copyright and database rights 2019 Ordnance Survey 100035207 Production date: 02 March 2022

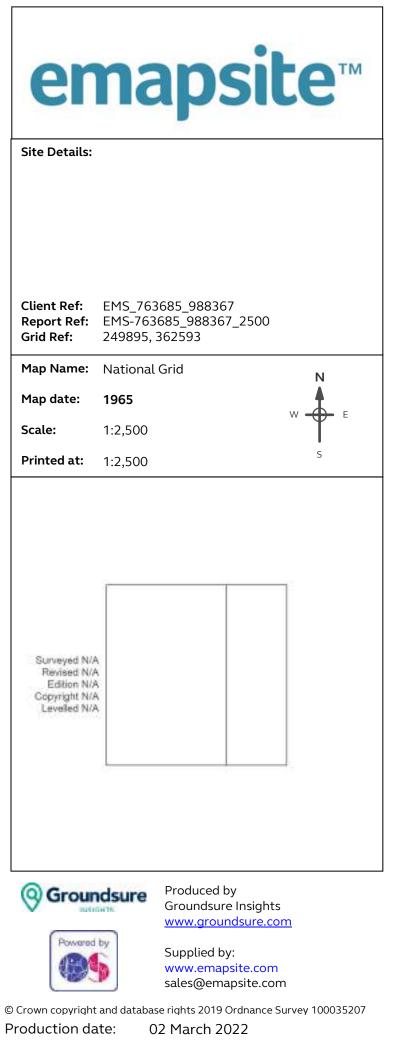


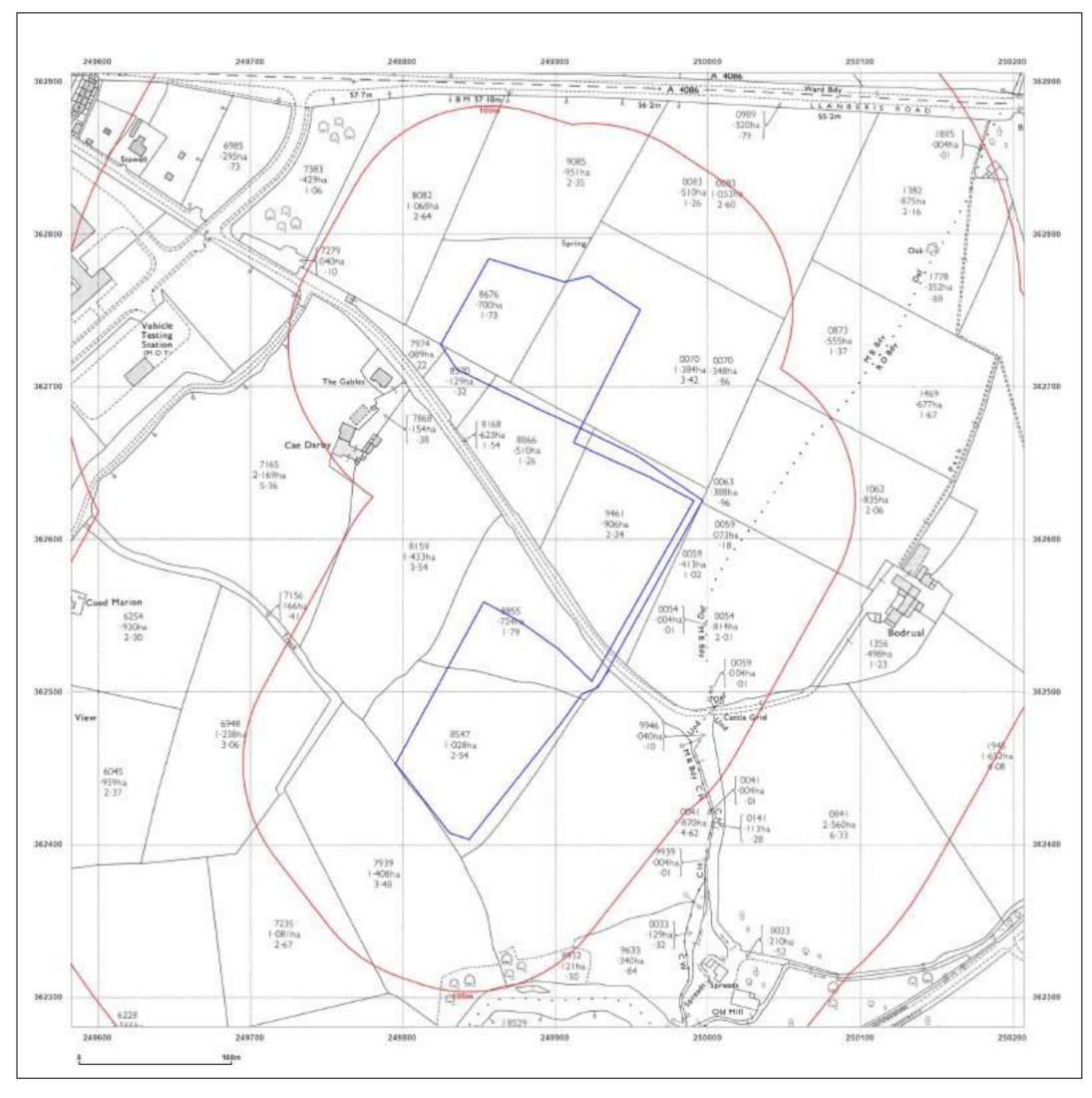
Supplied by: www.emapsite.com sales@emapsite.com

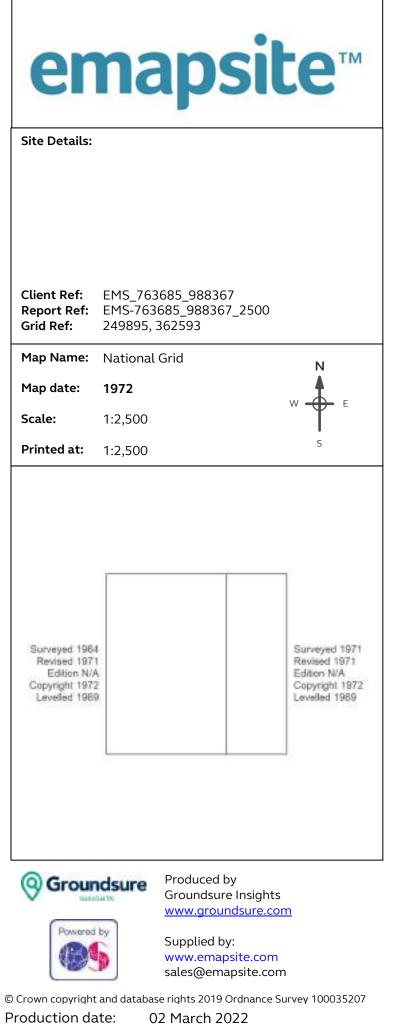

© Crown copyright and database rights 2019 Ordnance Survey 100035207 Production date: 02 March 2022

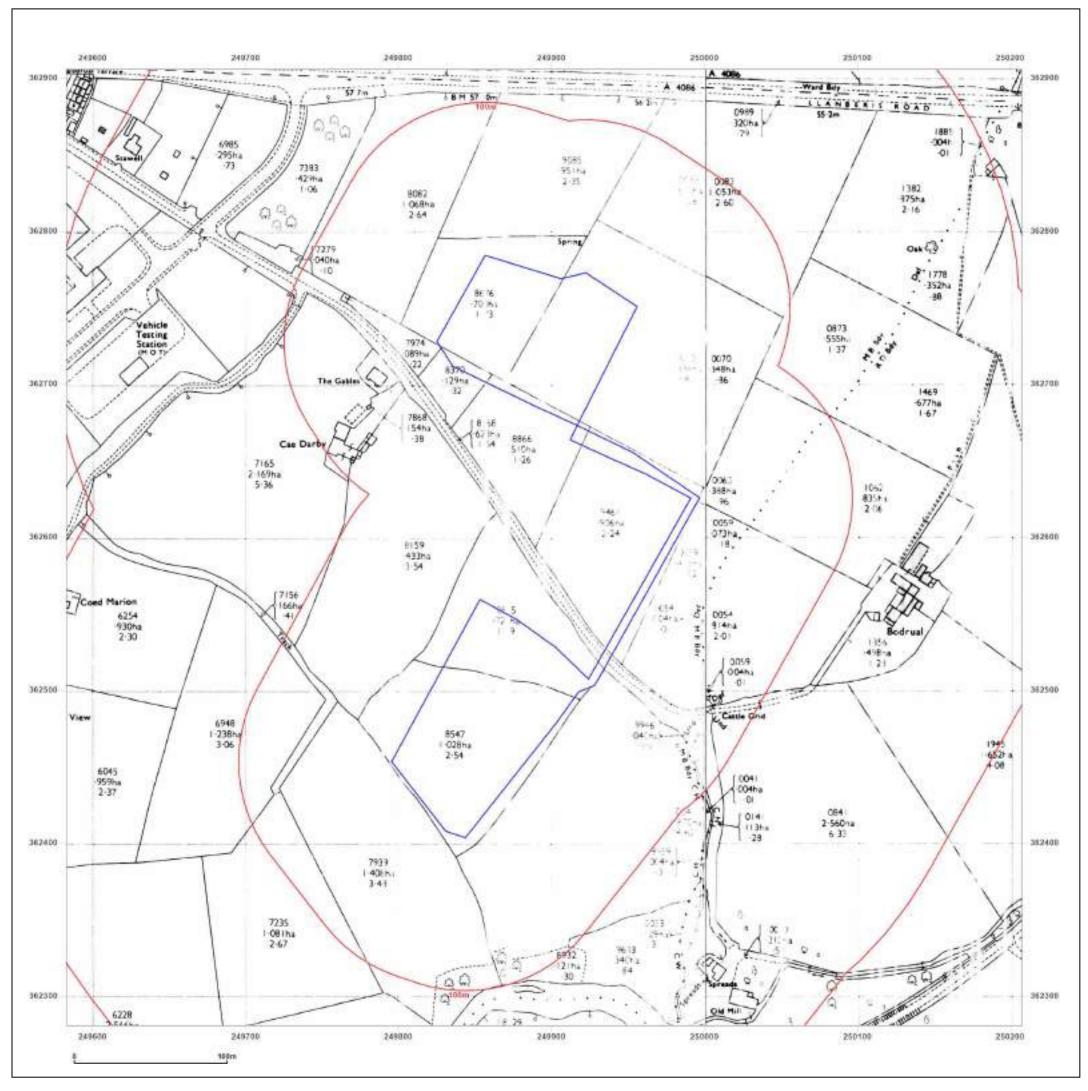


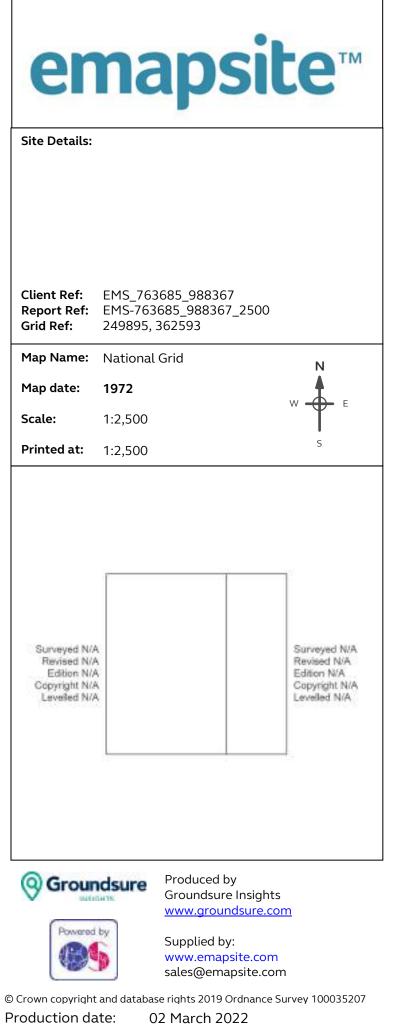


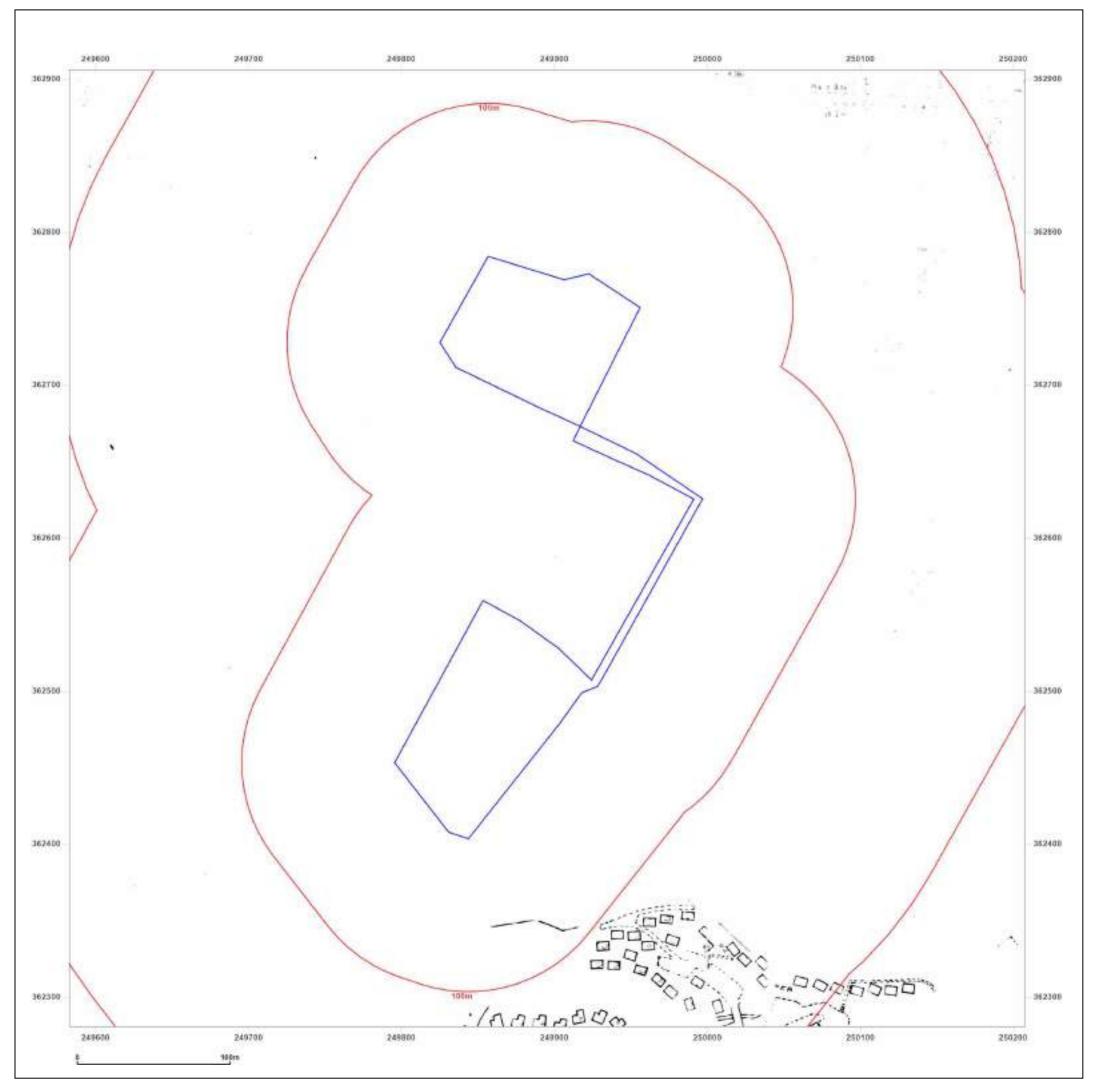

Supplied by: www.emapsite.com sales@emapsite.com

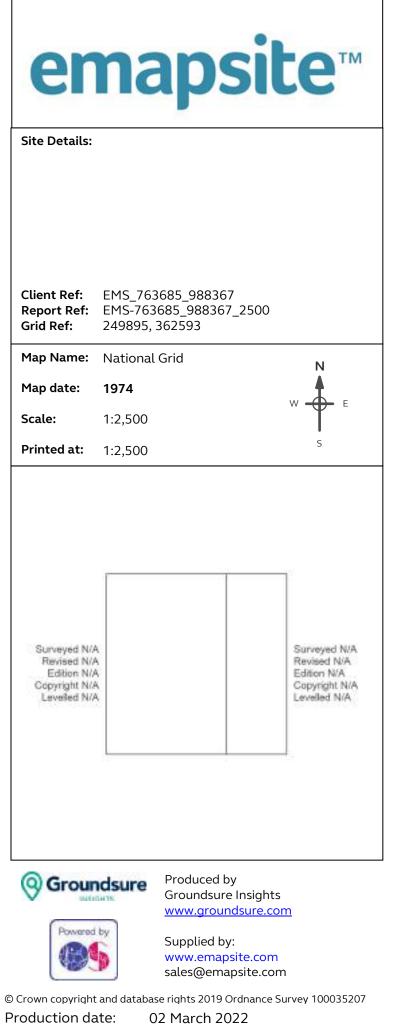

© Crown copyright and database rights 2019 Ordnance Survey 100035207 Production date: 02 March 2022



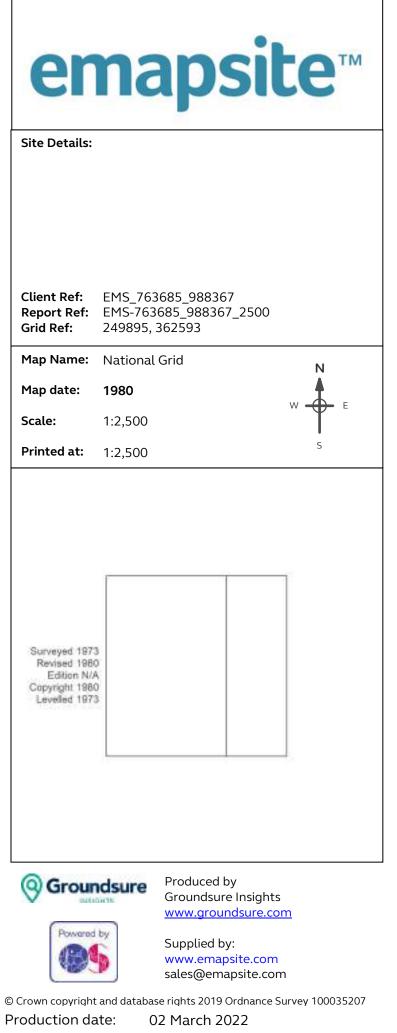


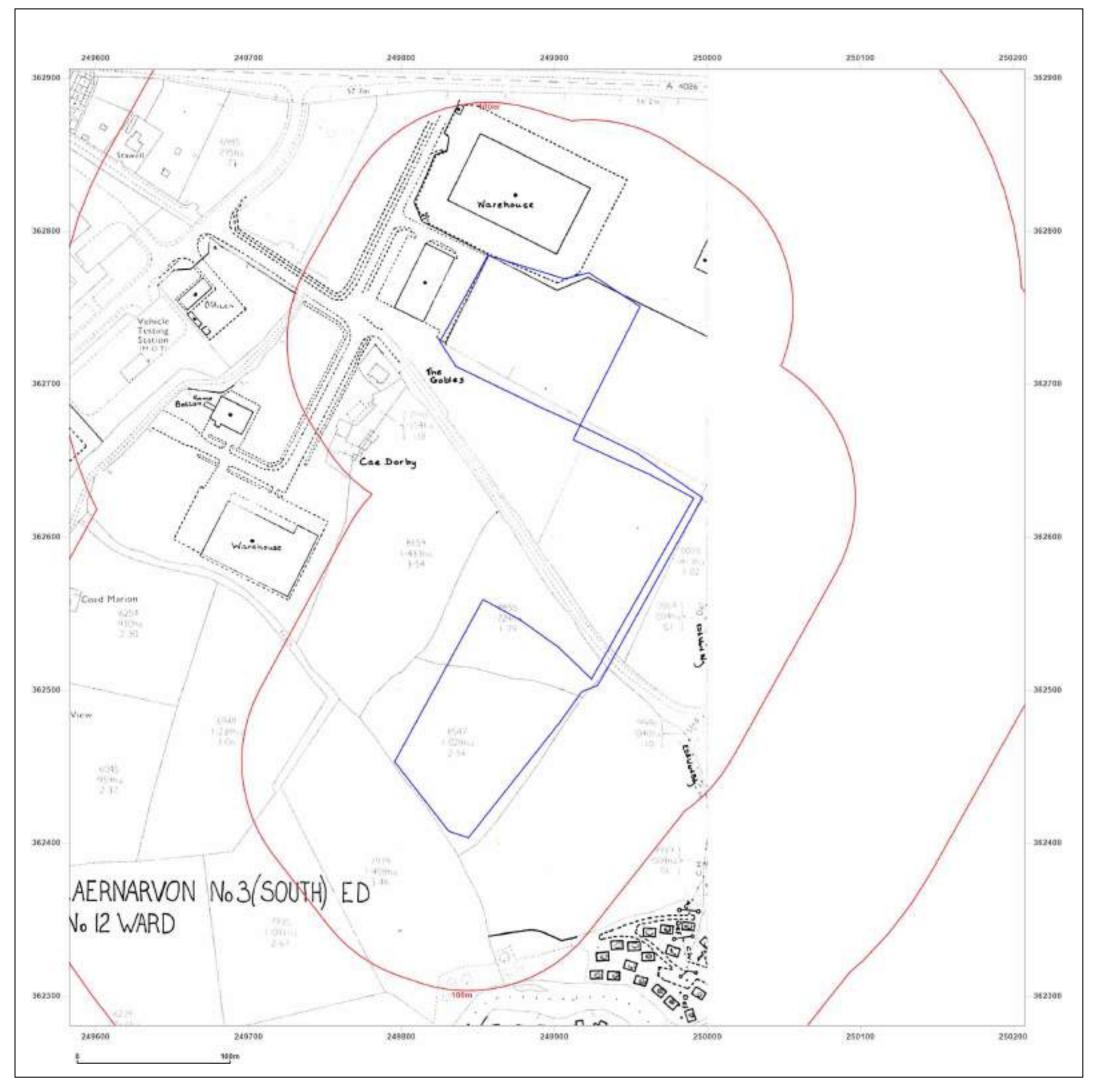


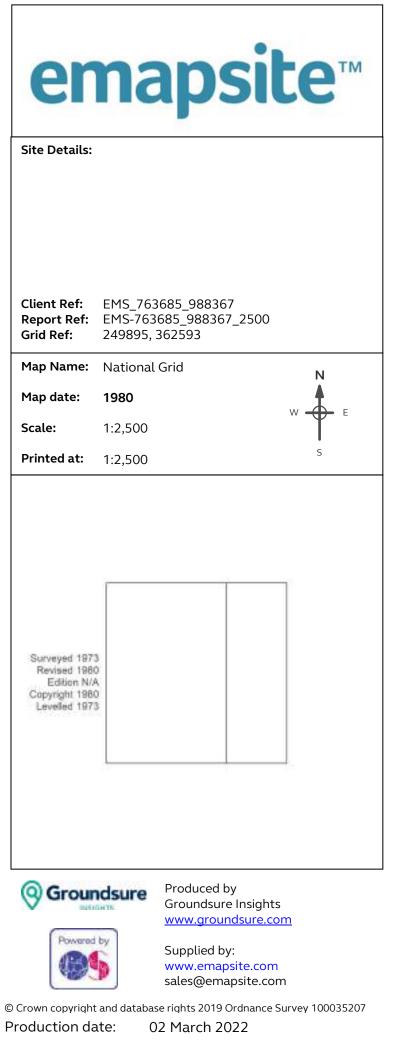


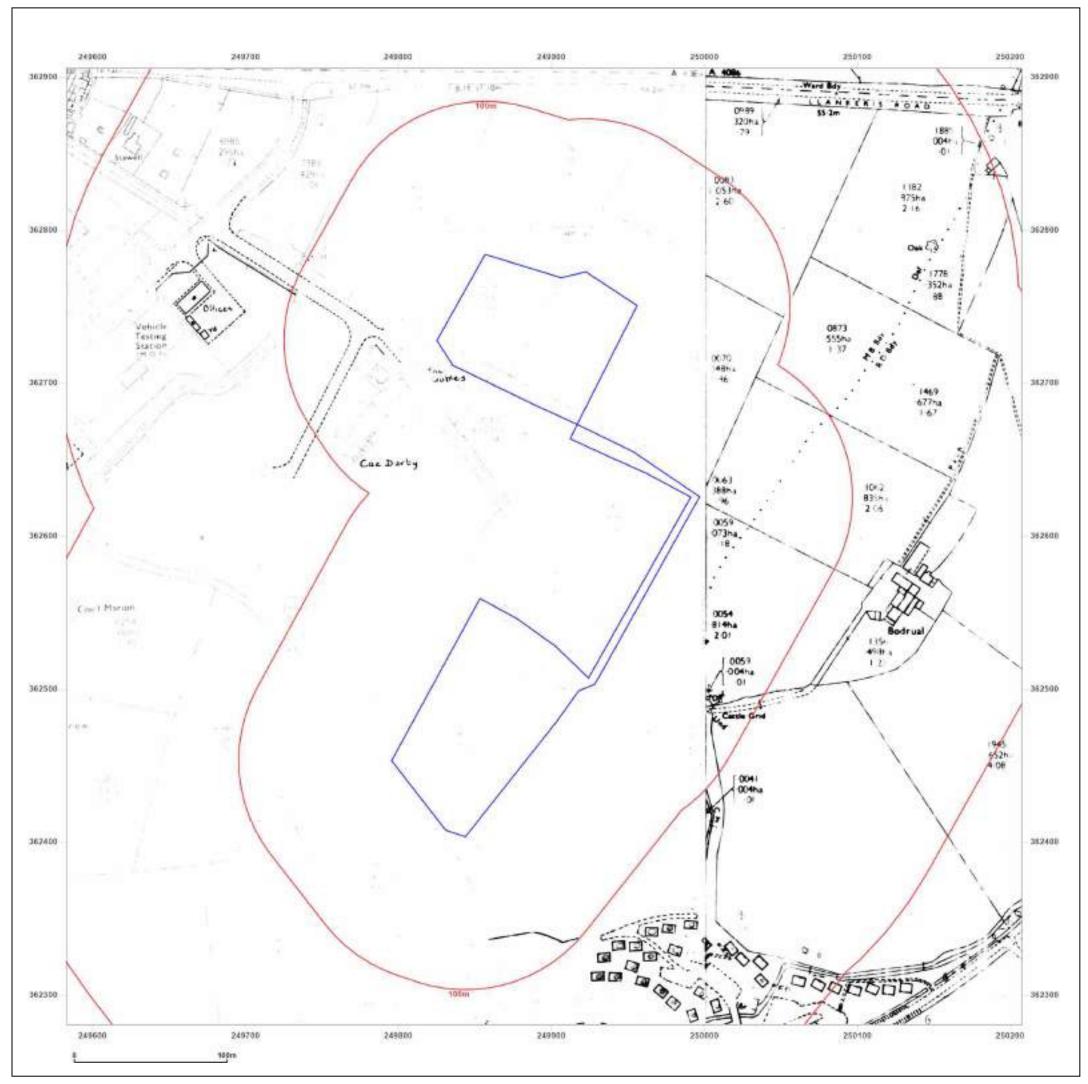


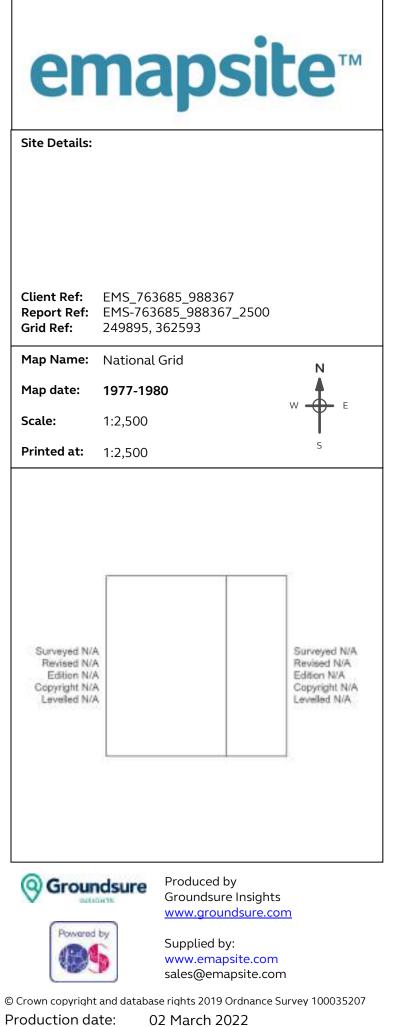


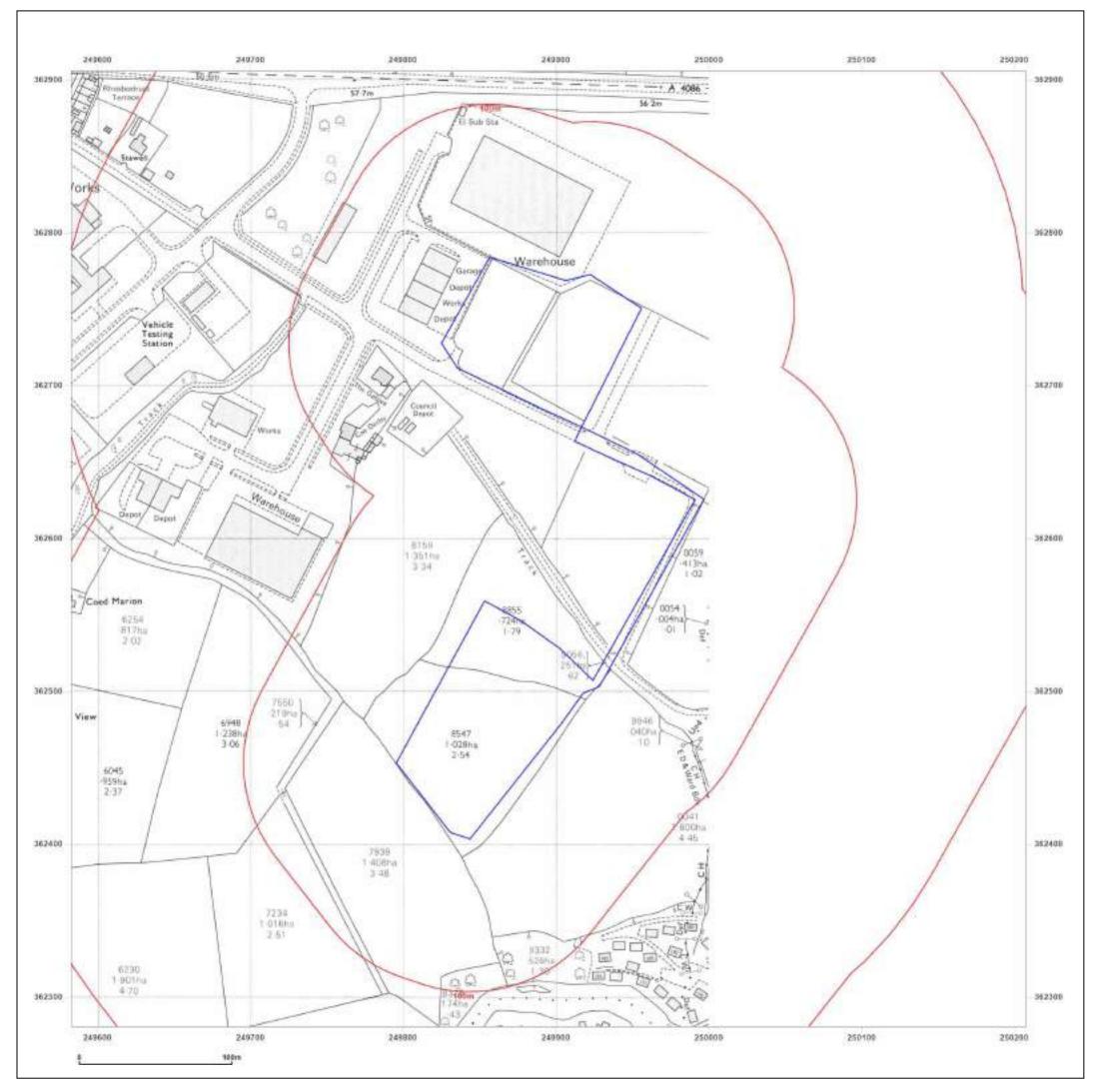


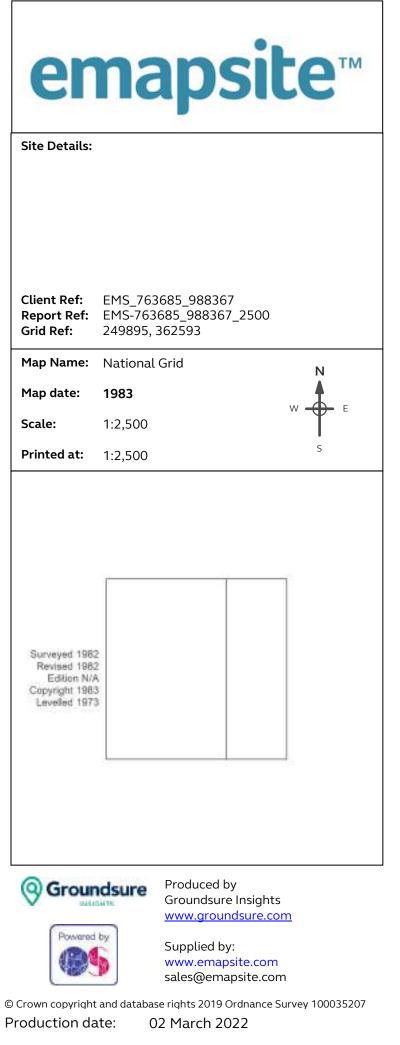


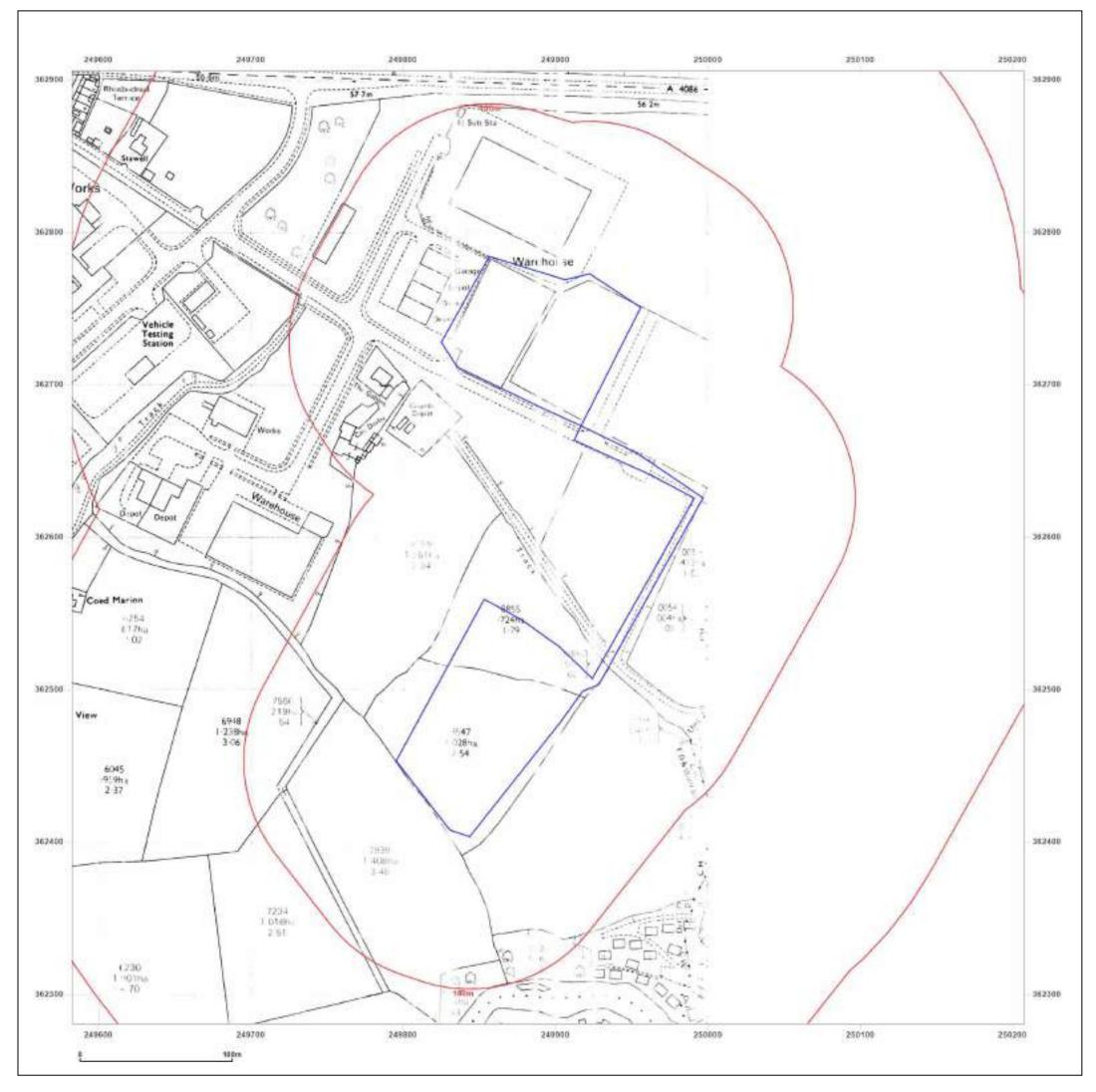


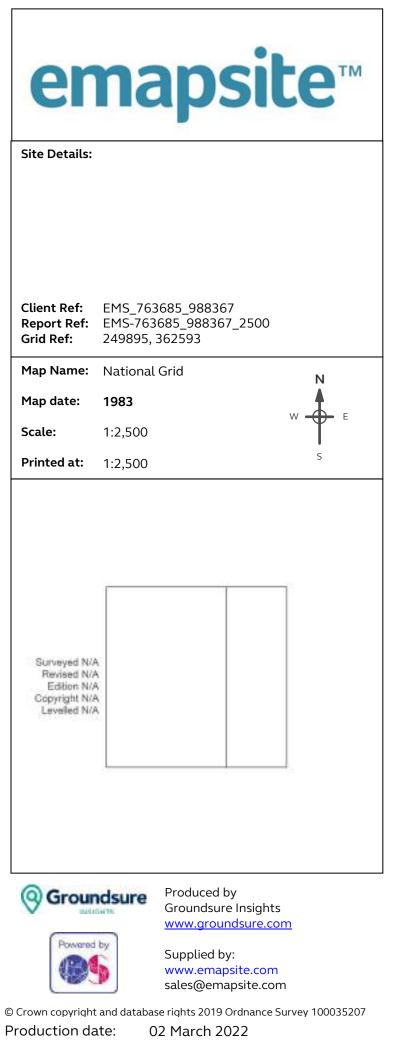


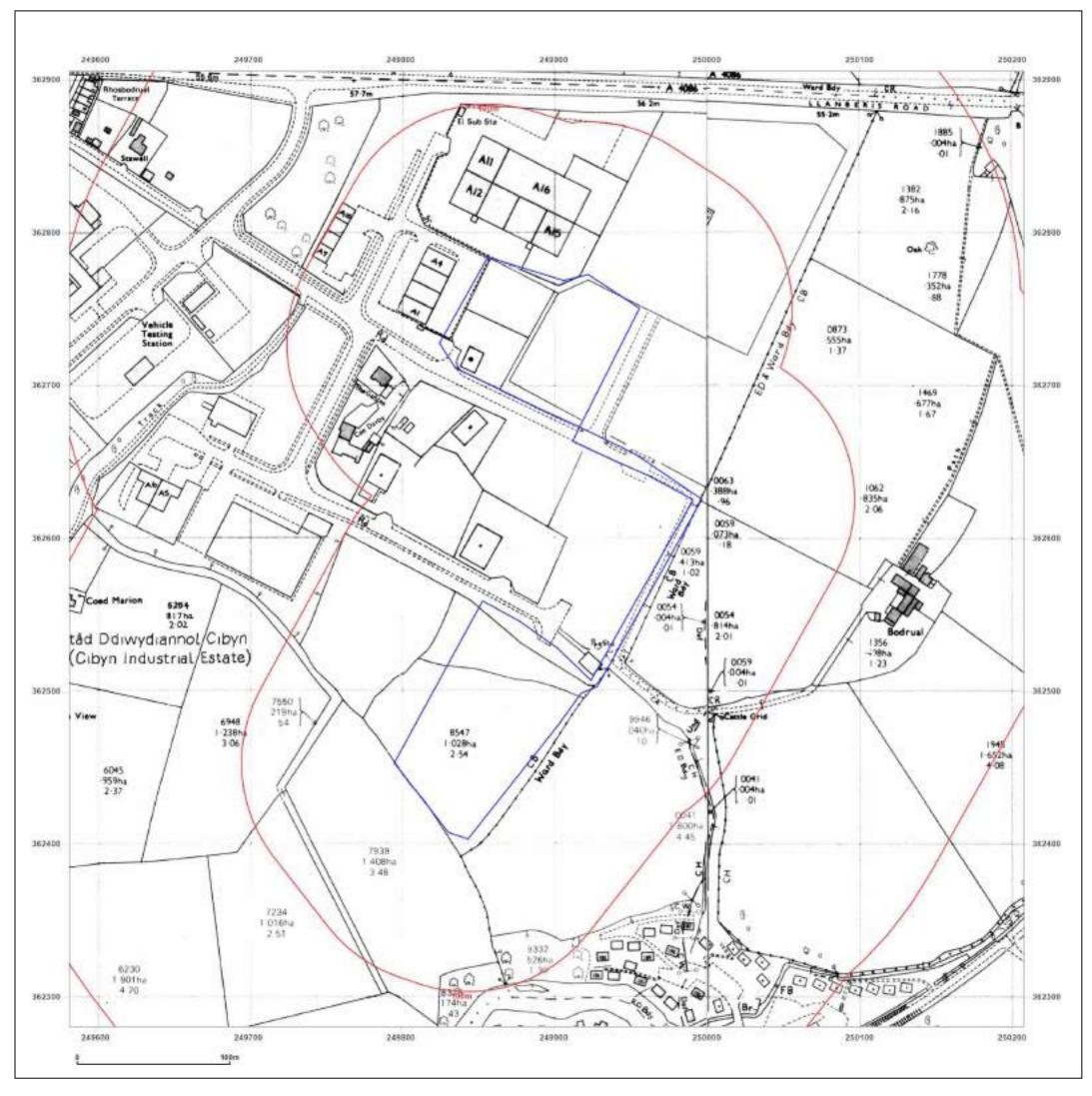


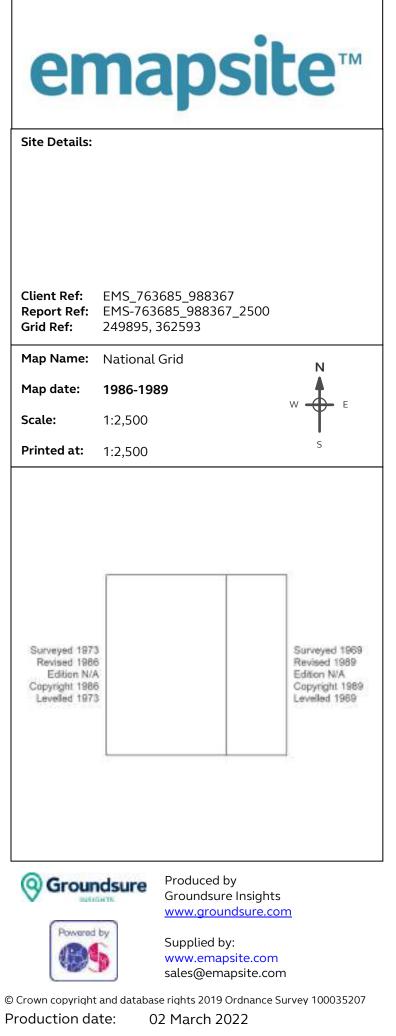


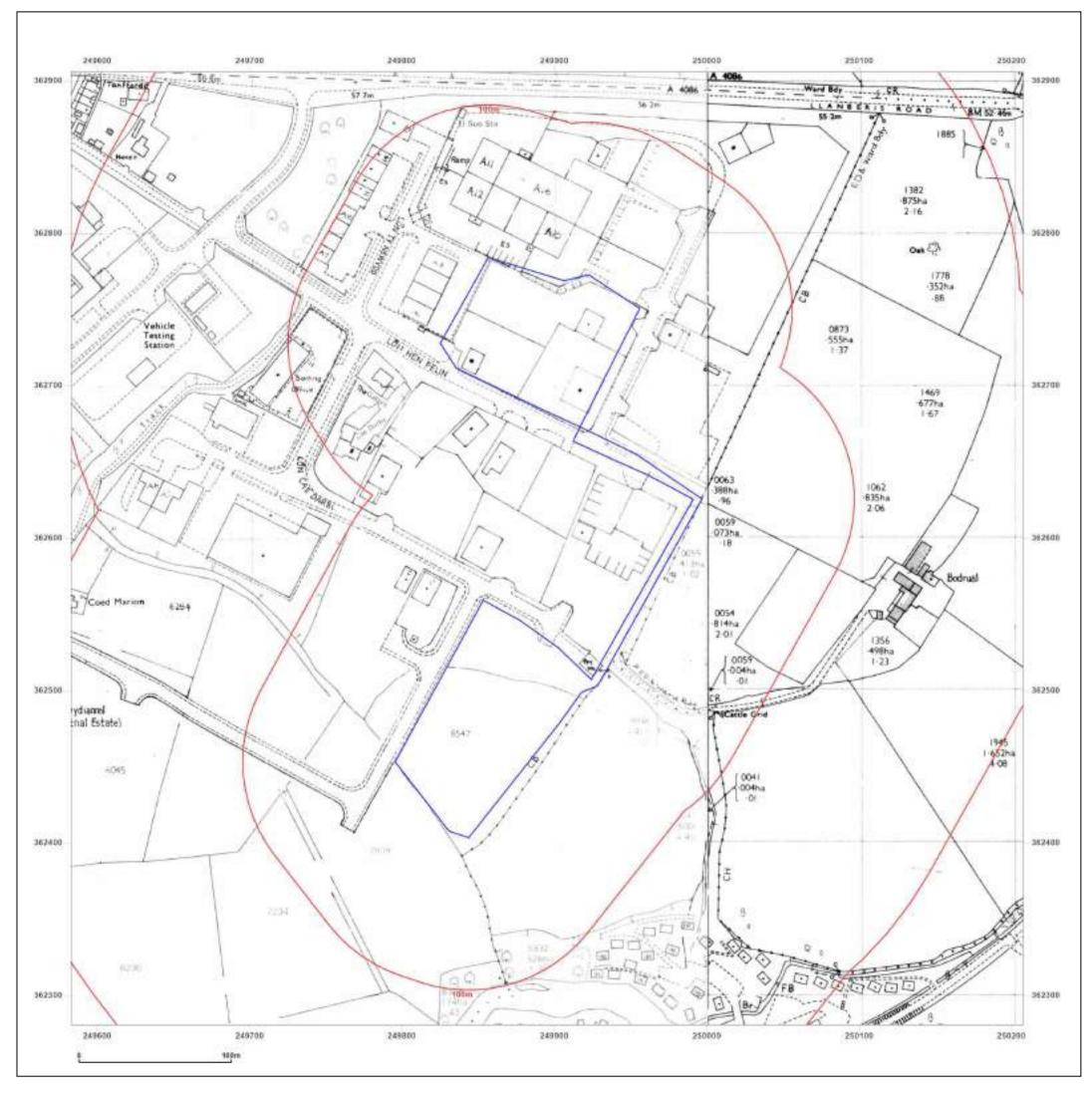


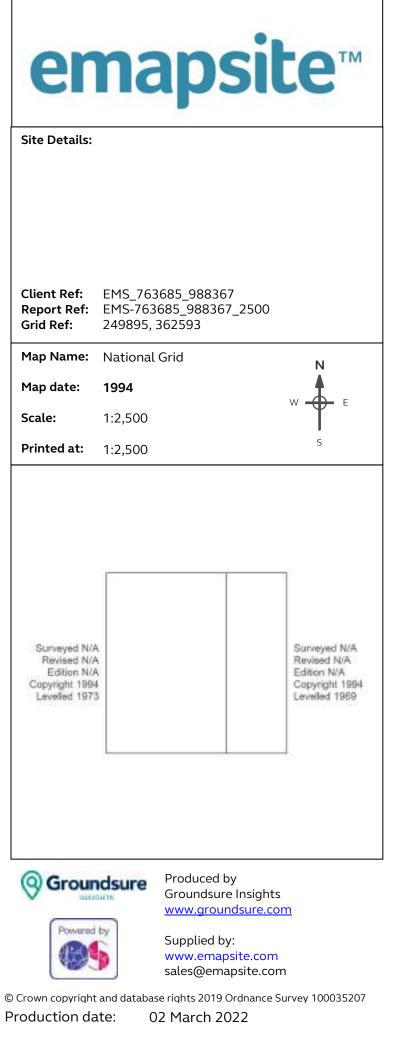


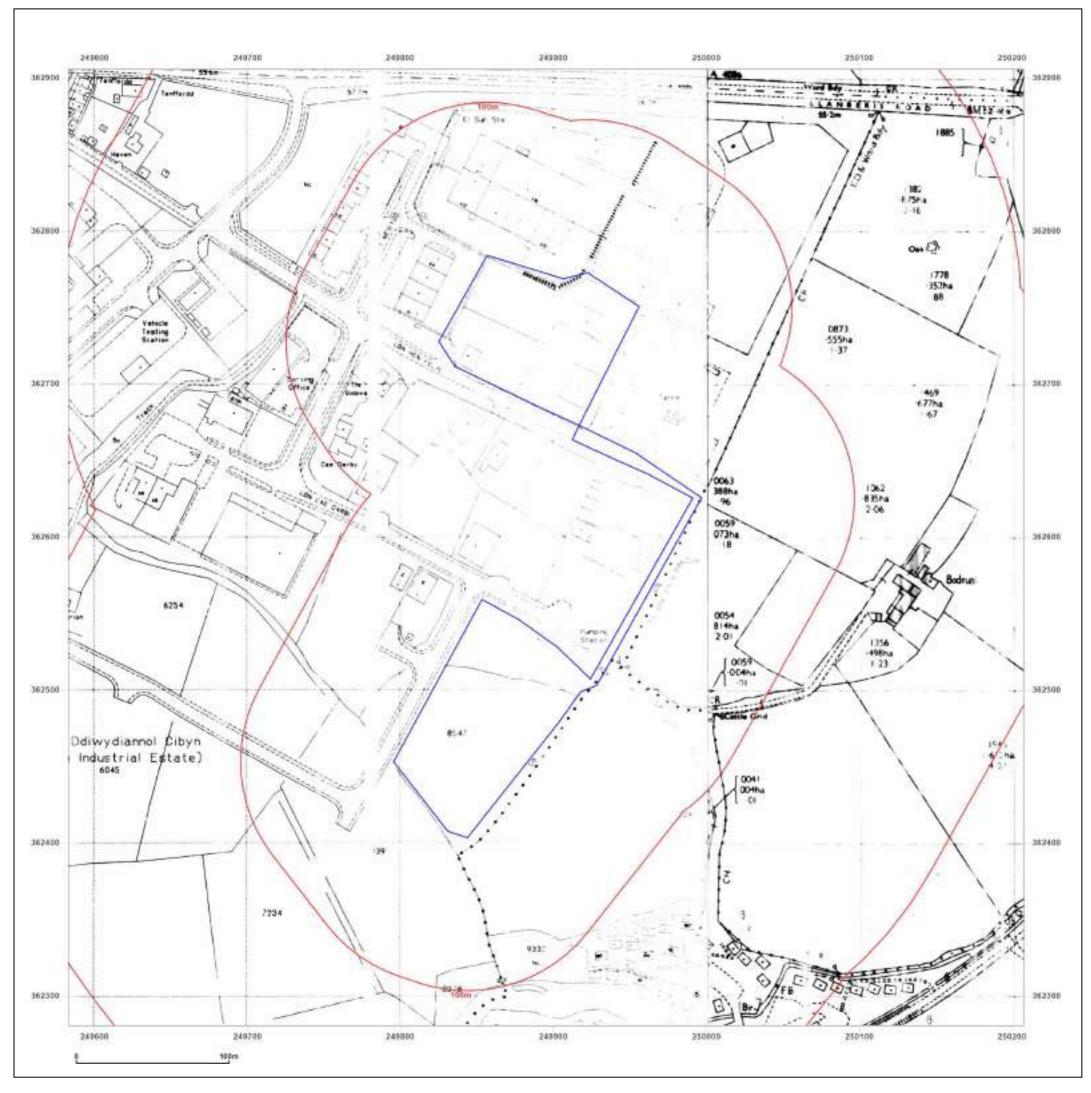


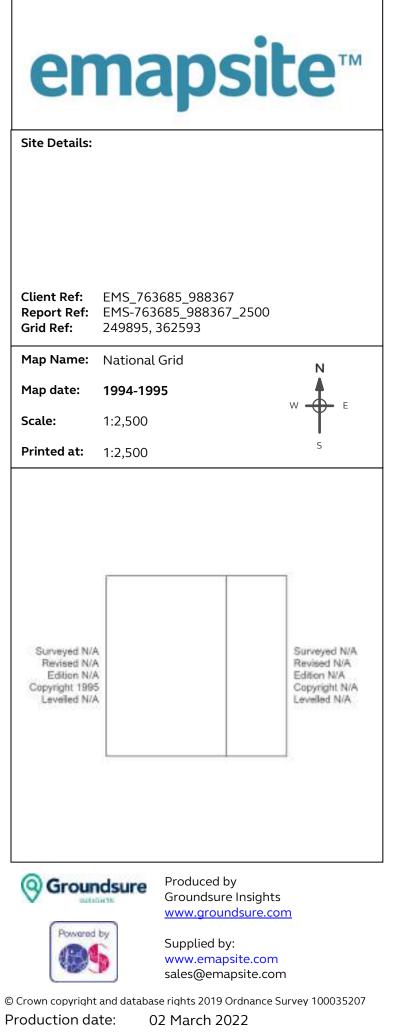


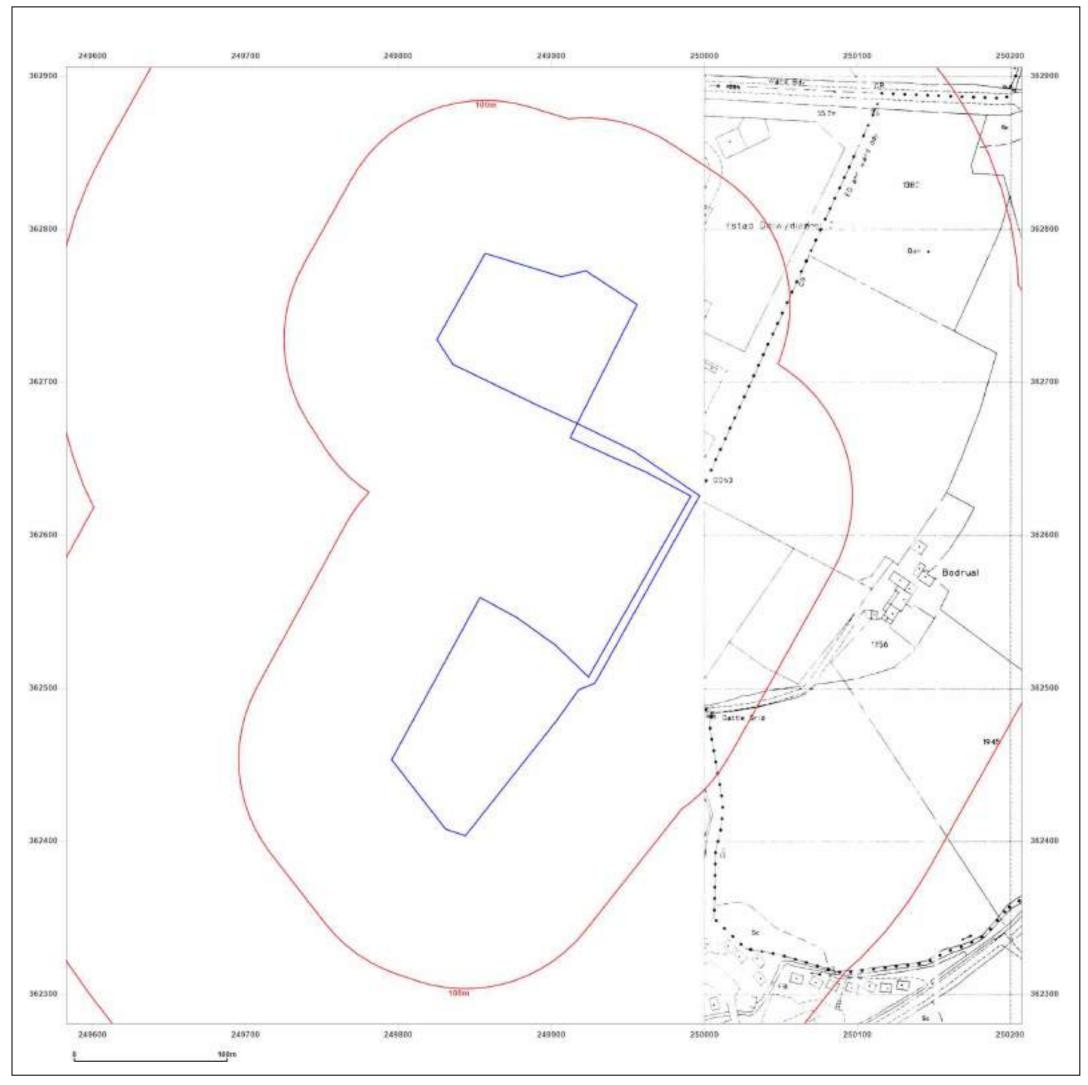




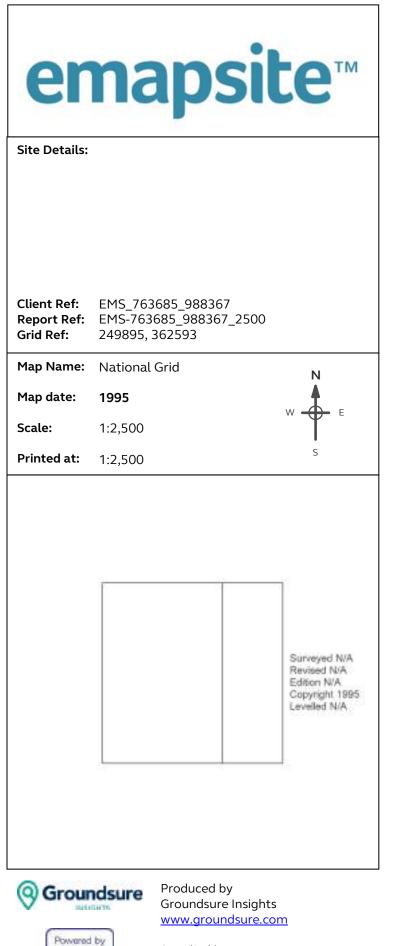


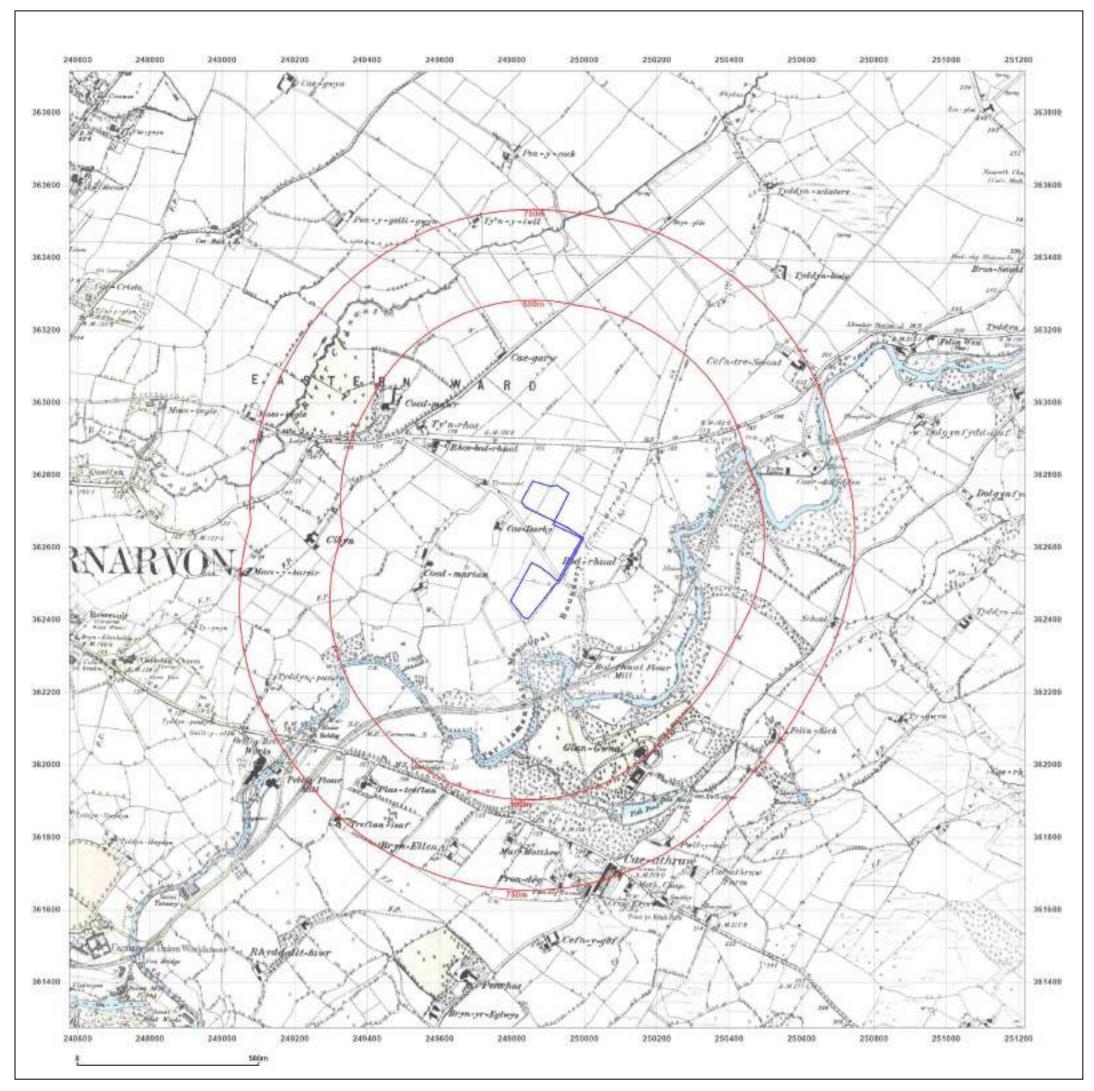

M

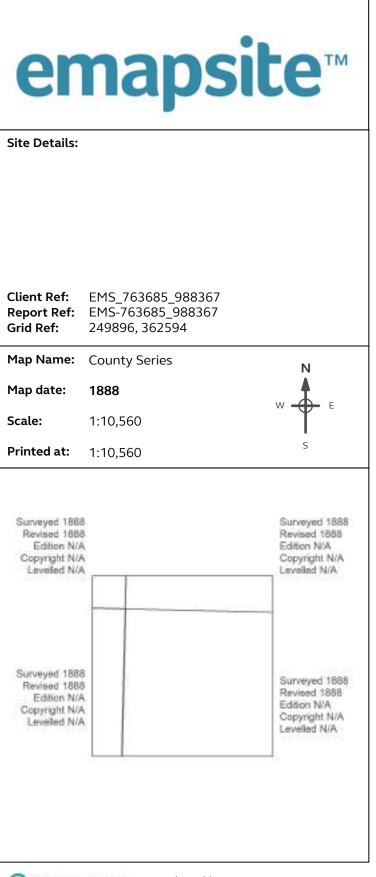


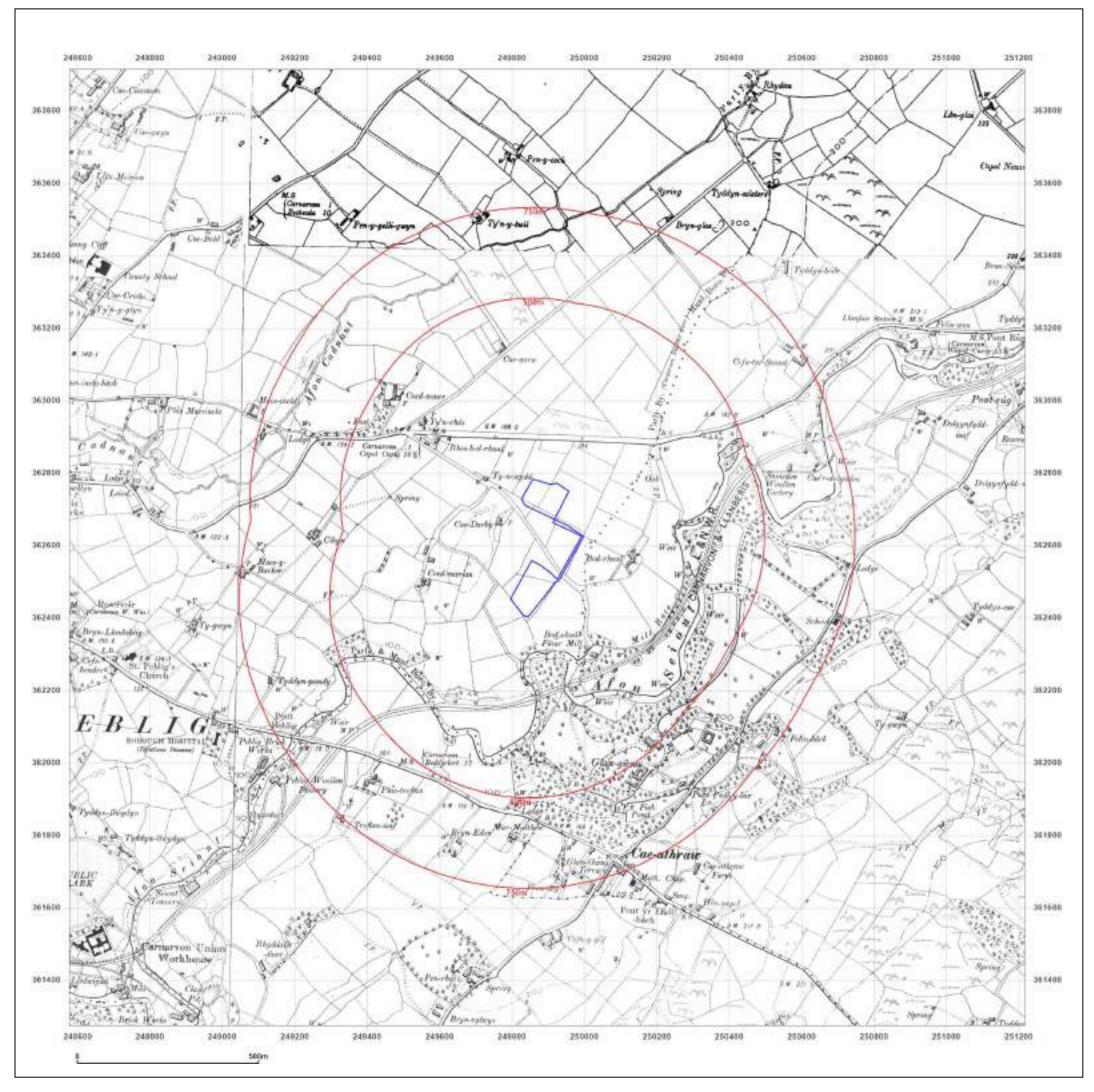


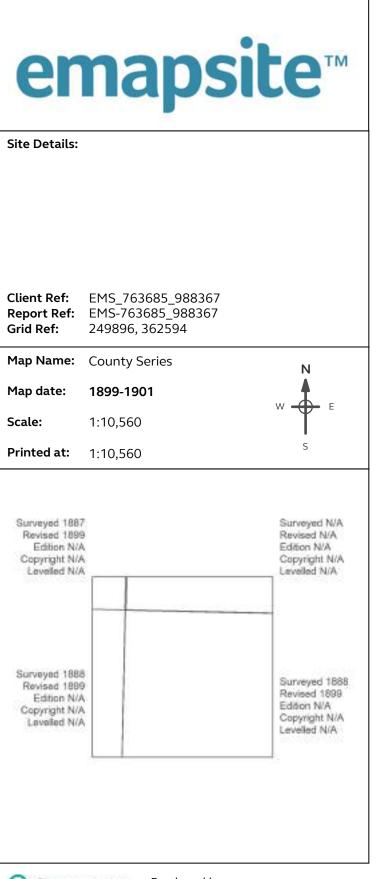
Pi Mi

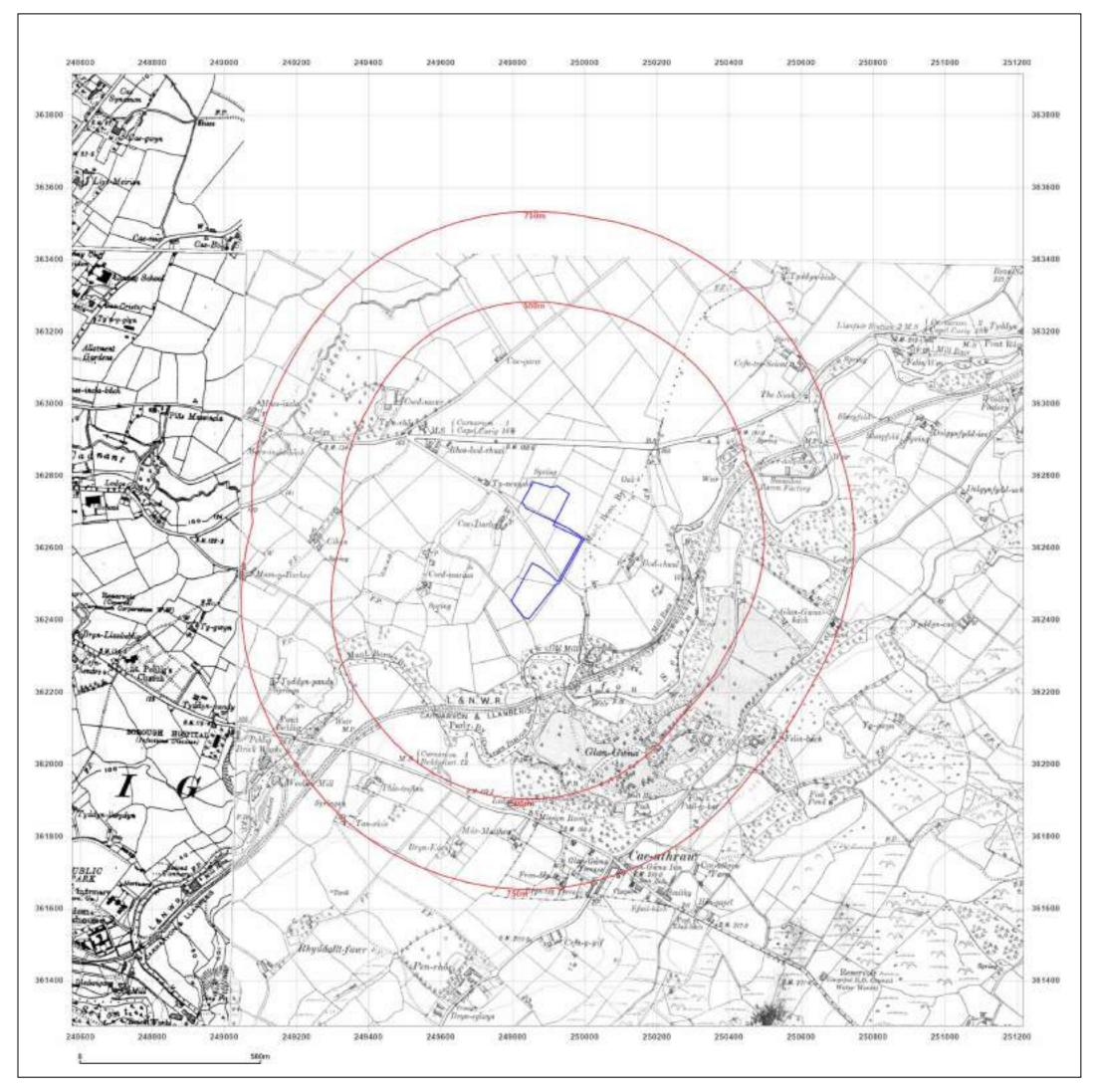


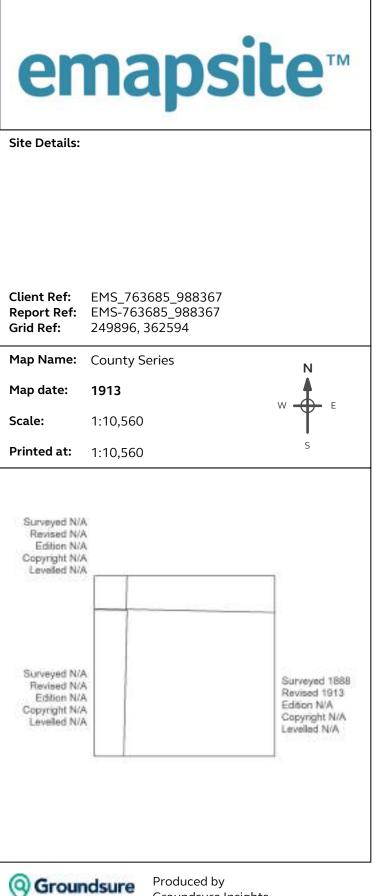



P M

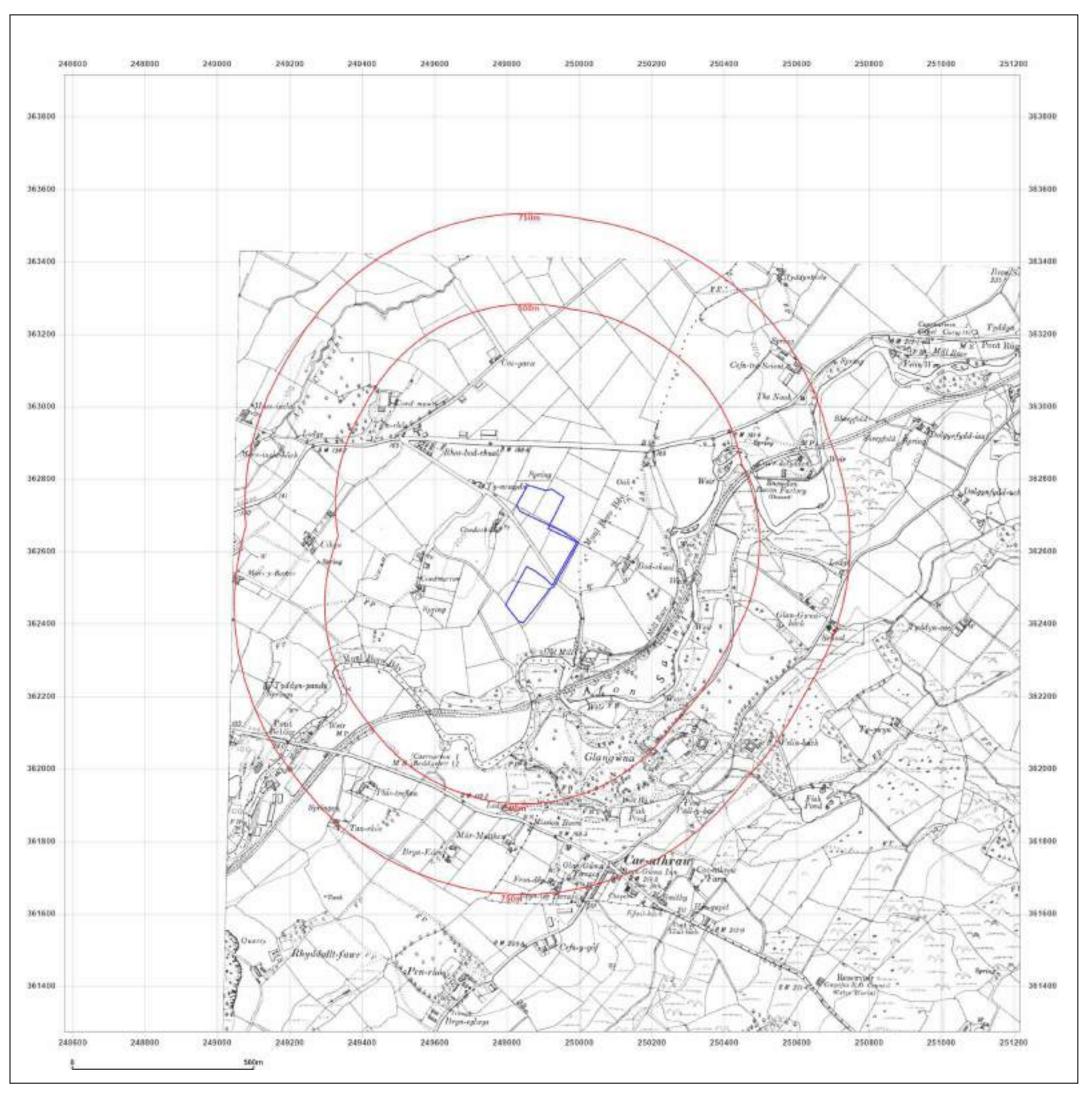

Supplied by: www.emapsite.com sales@emapsite.com

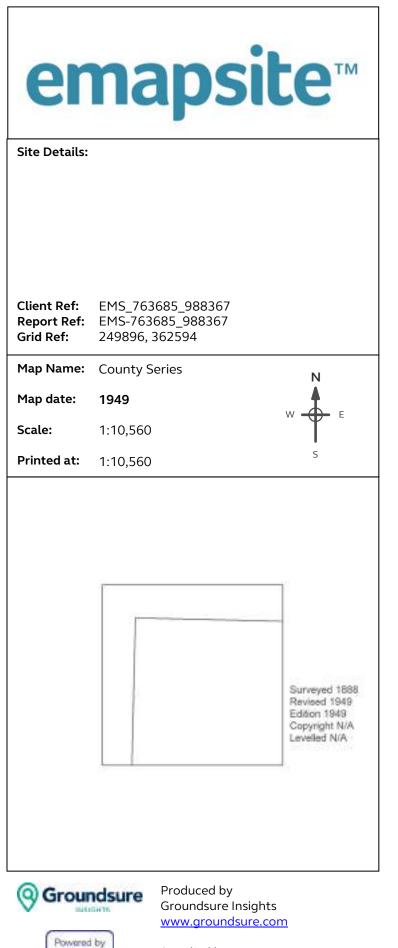

© Crown copyright and database rights 2019 Ordnance Survey 100035207 Production date: 02 March 2022




Groundsure Produced by Groundsure Insights www.groundsure.com Powered by Supplied by: www.emapsite.com sales@emapsite.com © Crown copyright and database rights 2019 Ordnance Survey 100035207 Production date: 02 March 2022

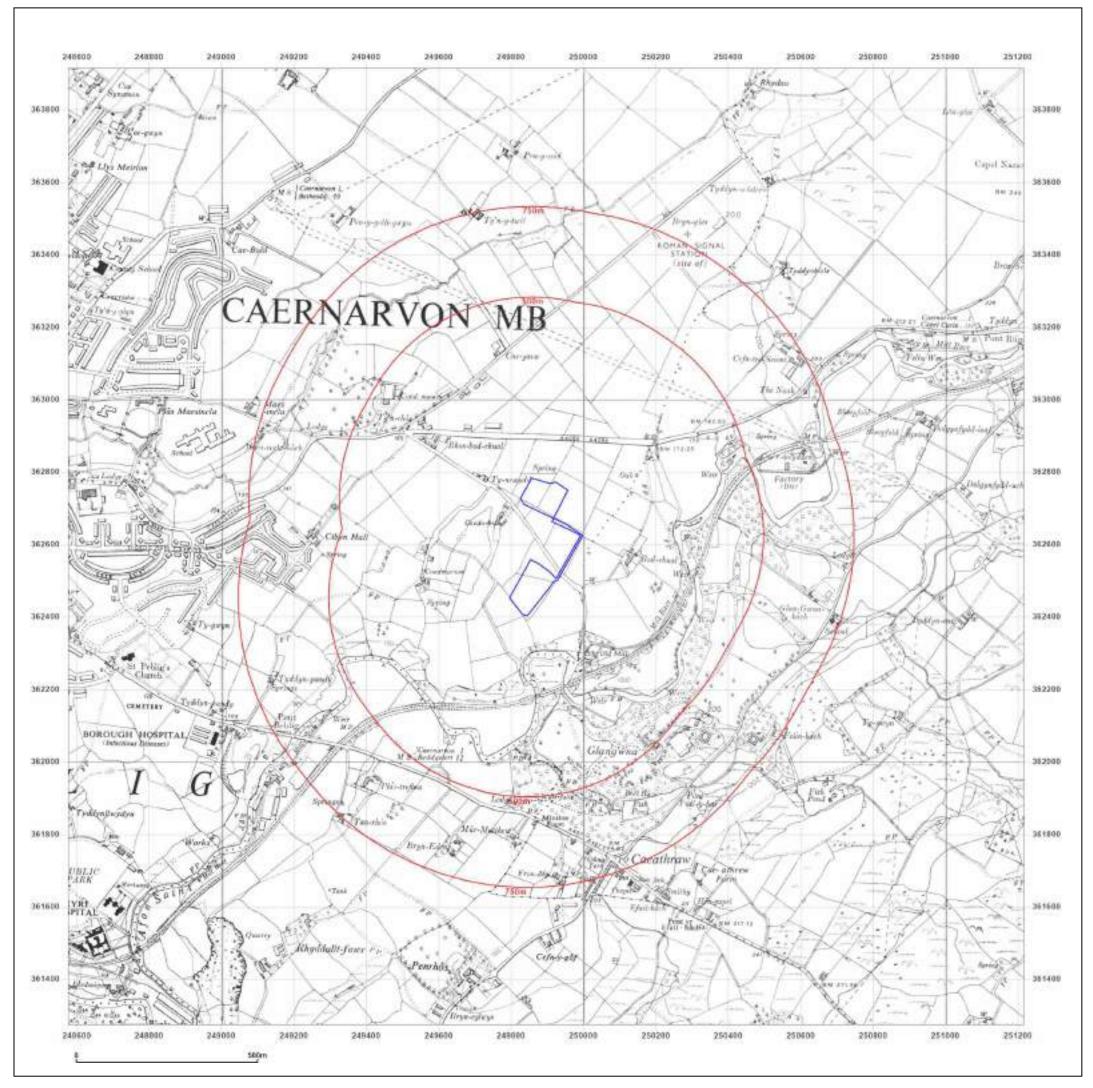
© Groundsure Supplied by: www.emapsite.com sales@emapsite.com © Crown copyright and database rights 2019 Ordnance Survey 100035207 Production date: 02 March 2022

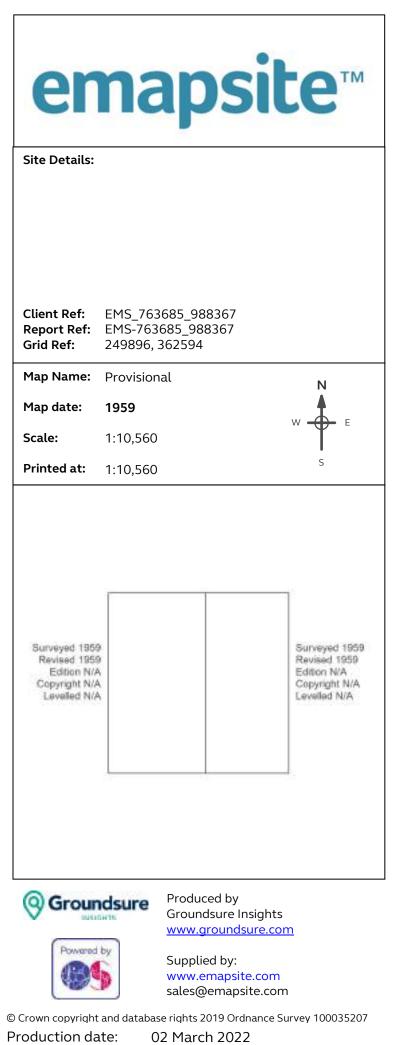

Groundsure Insights www.groundsure.com

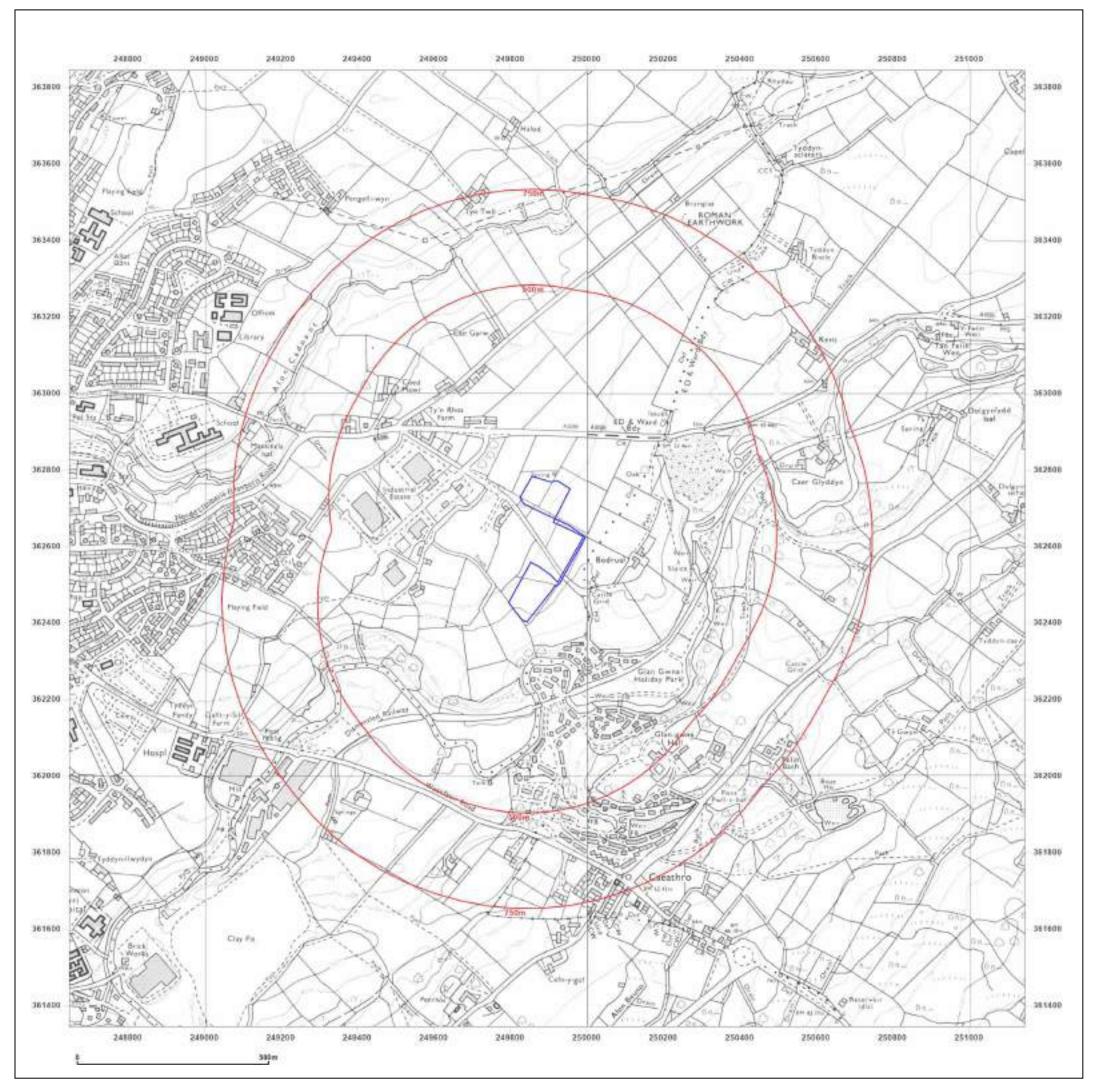


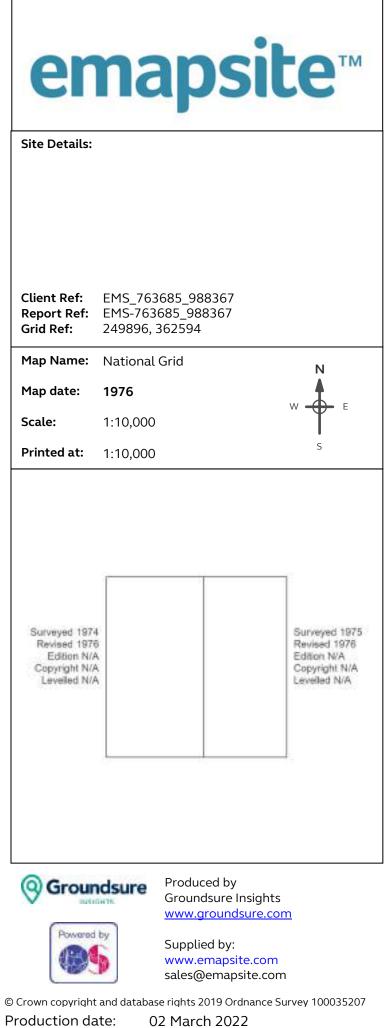
Supplied by: www.emapsite.com

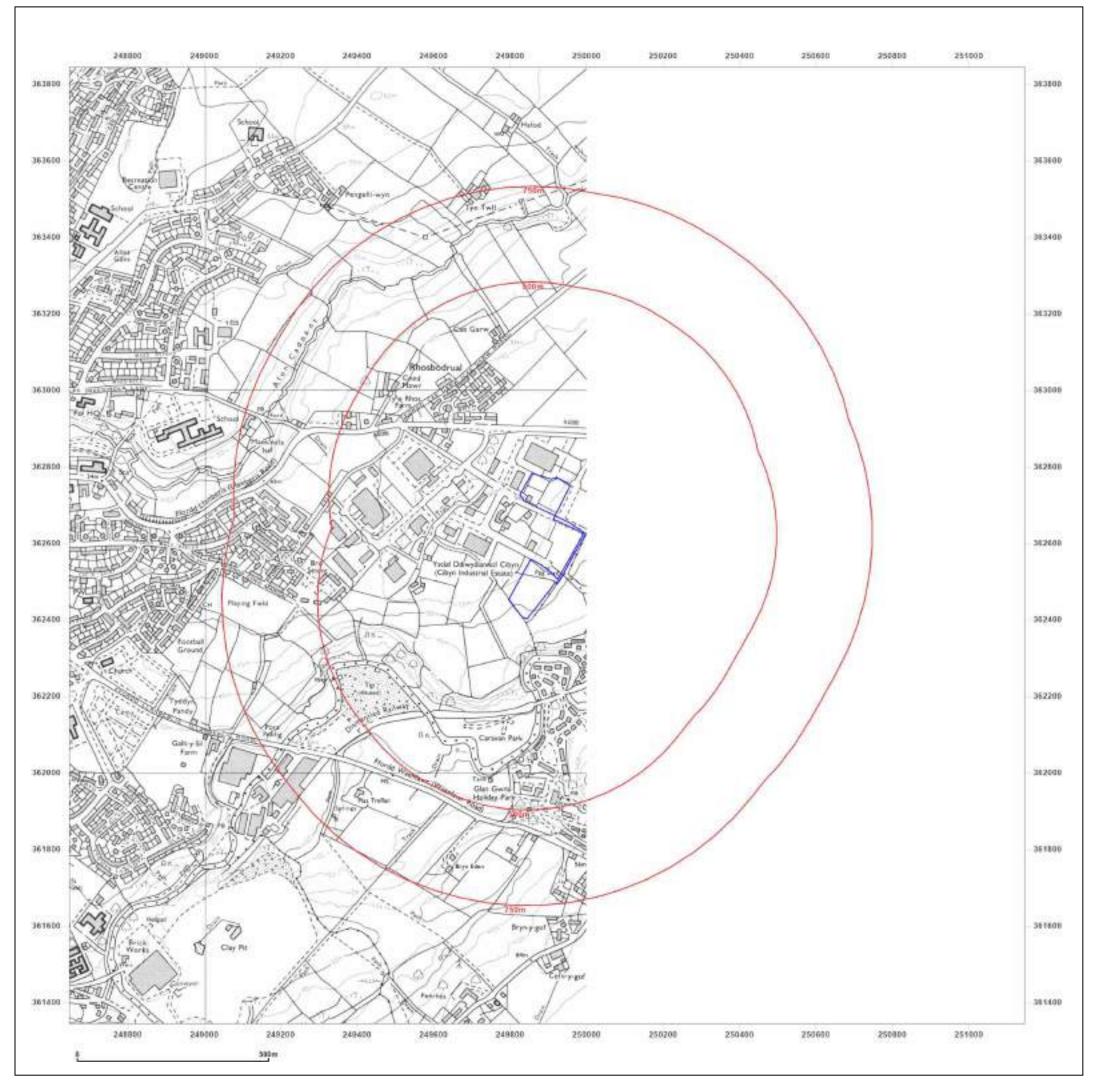
sales@emapsite.com

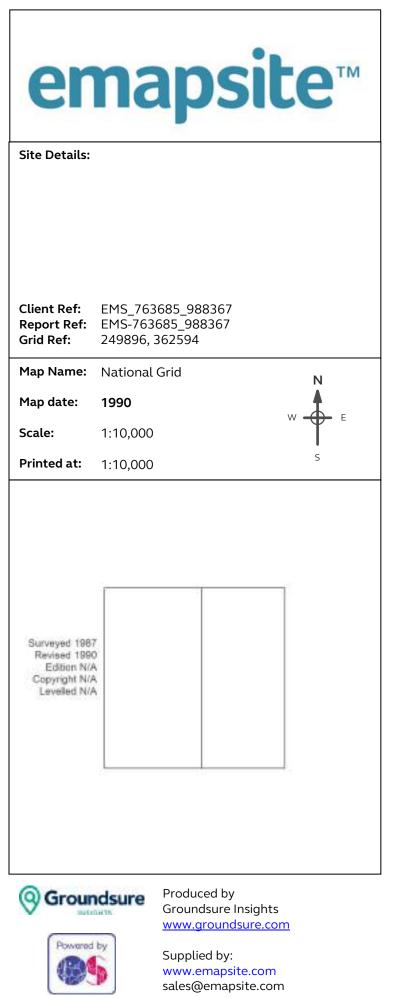

© Crown copyright and database rights 2019 Ordnance Survey 100035207 Production date: 02 March 2022

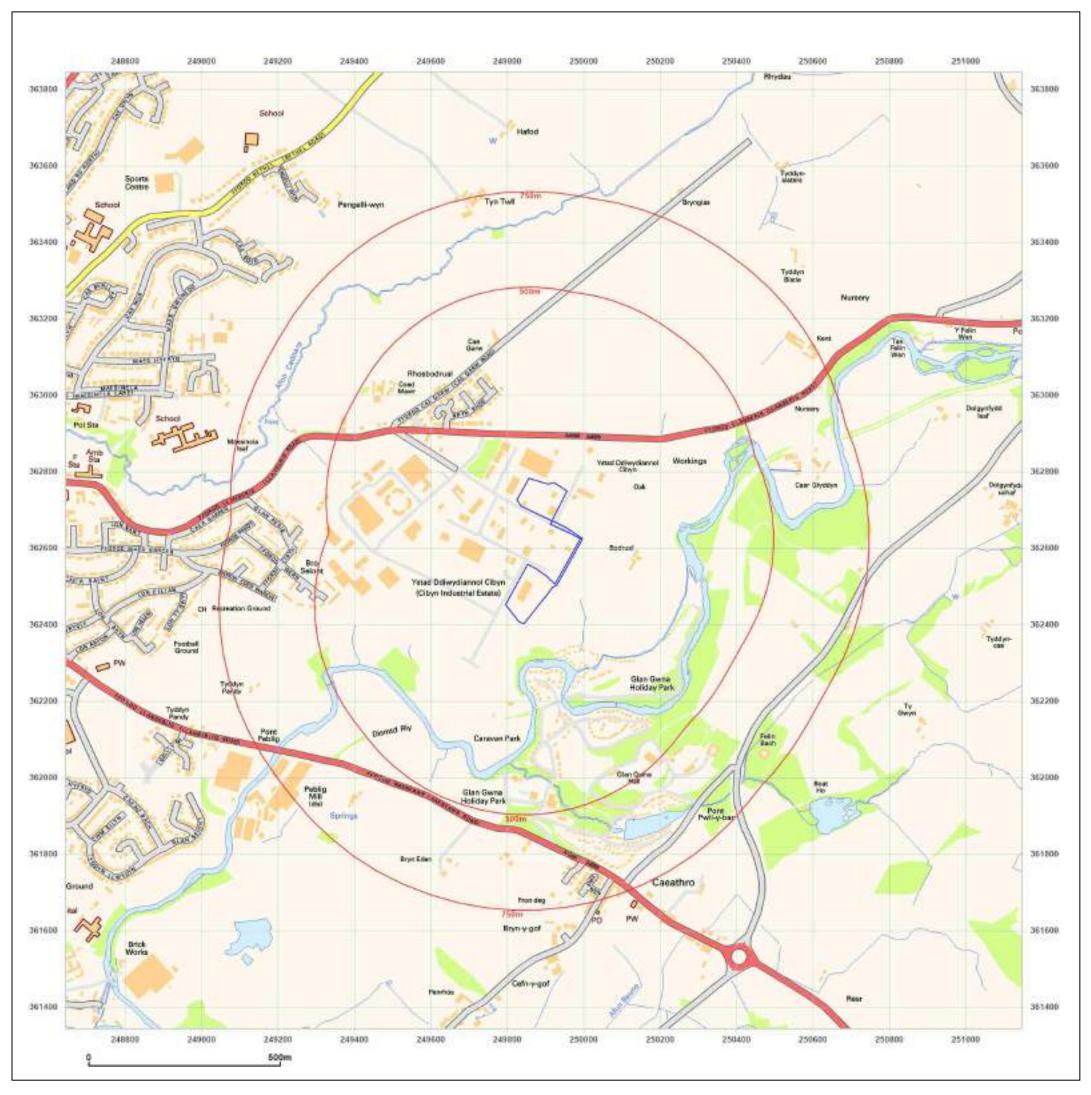


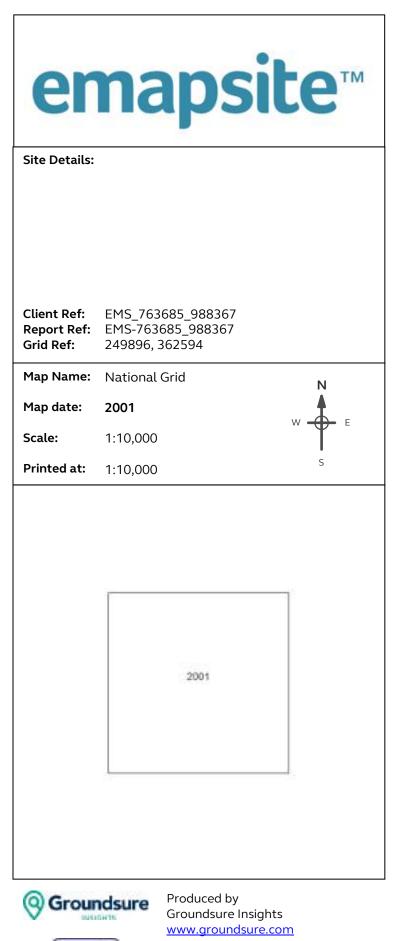




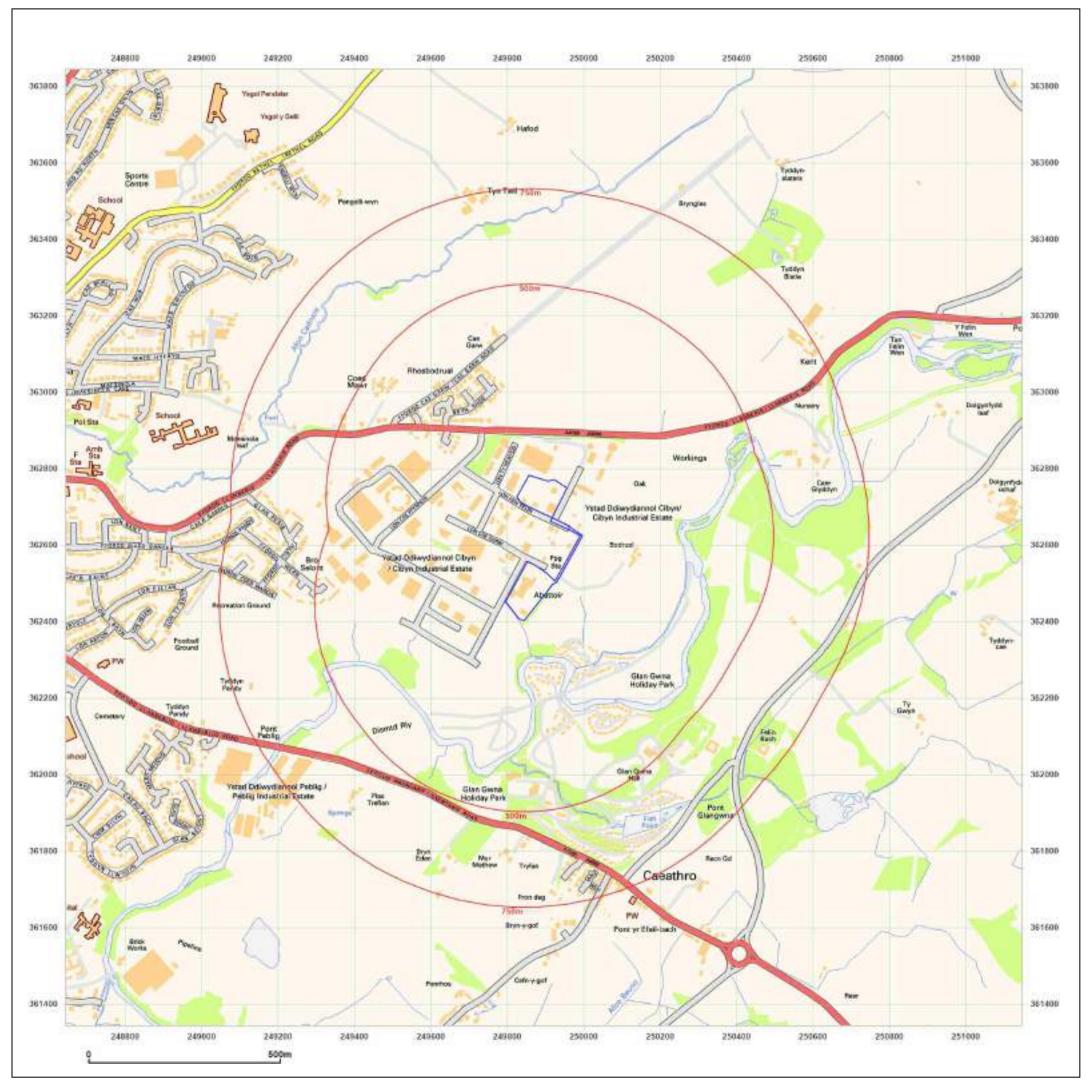

© Crown copyright and database rights 2019 Ordnance Survey 100035207 Production date: 02 March 2022

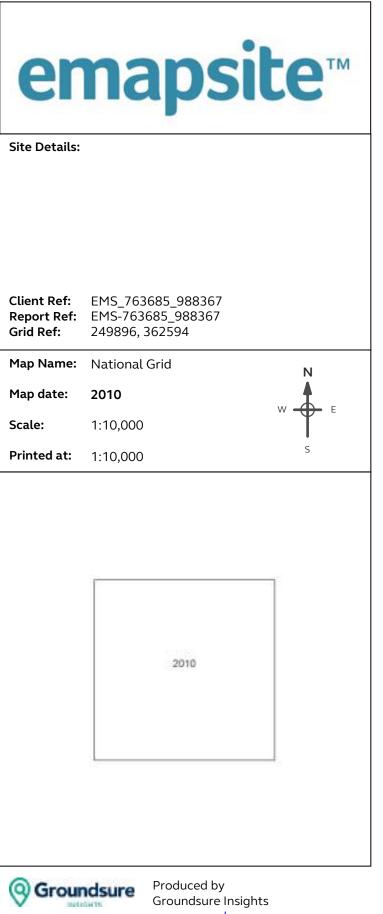






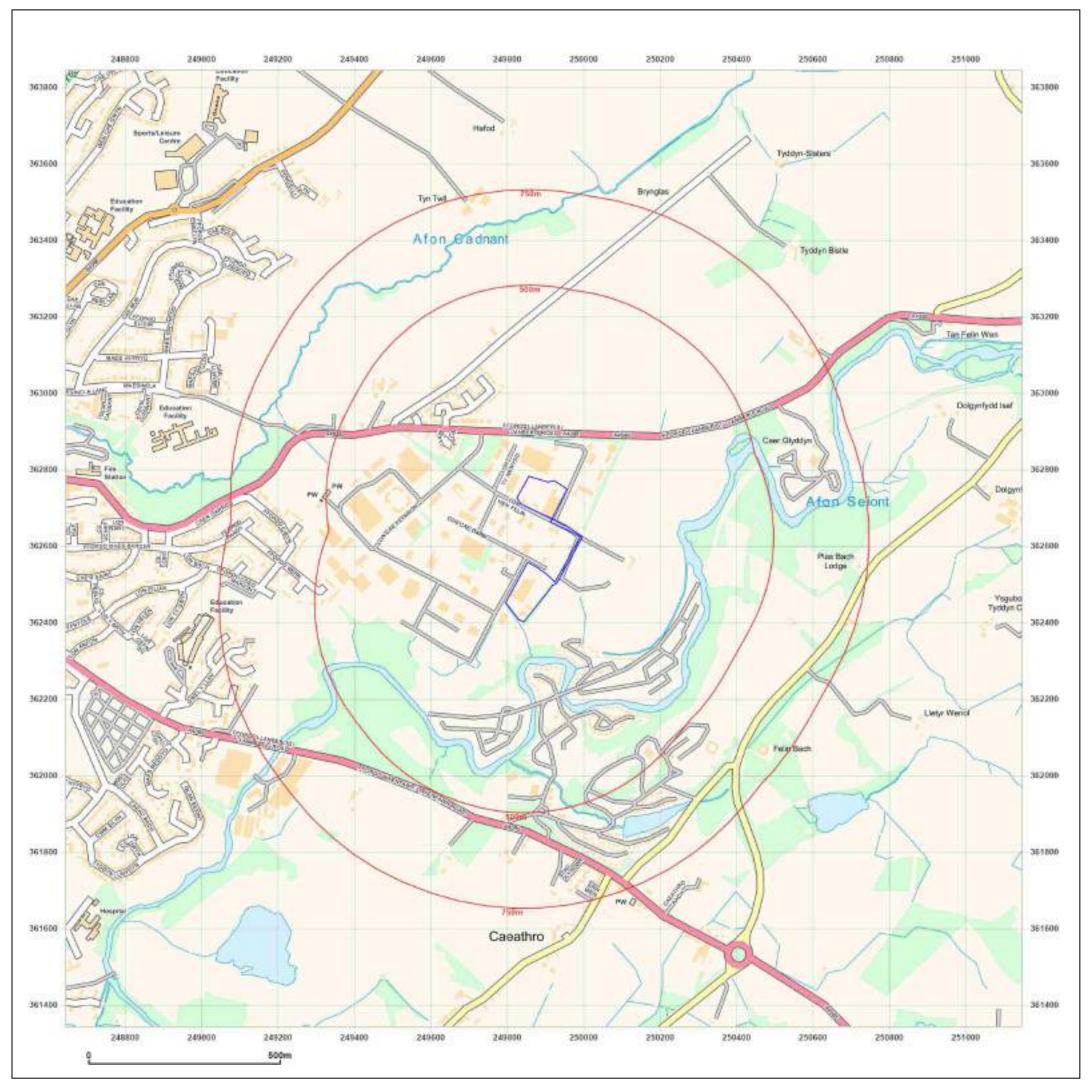
© Crown copyright and database rights 2019 Ordnance Survey 100035207 02 March 2022 Production date:

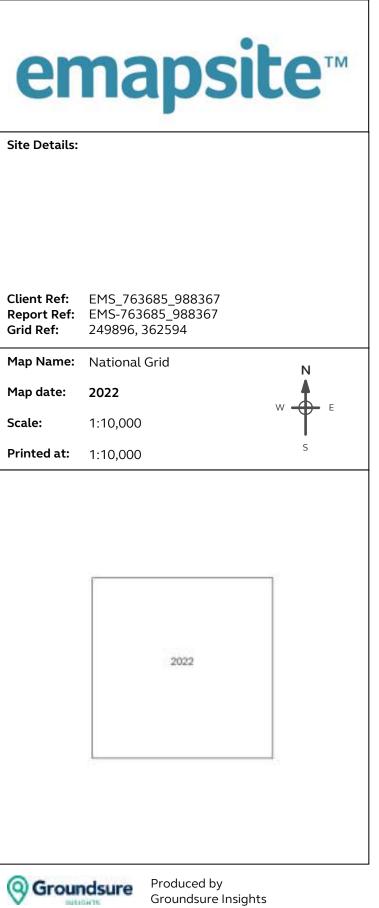

Powered by


Supplied by: www.emapsite.com

sales@emapsite.com

© Crown copyright and database rights 2019 Ordnance Survey 100035207 02 March 2022 Production date:


Powered by



www.groundsure.com

Supplied by: www.emapsite.com sales@emapsite.com

© Crown copyright and database rights 2019 Ordnance Survey 100035207 02 March 2022 Production date:

www.groundsure.com

Supplied by: www.emapsite.com sales@emapsite.com

© Crown copyright and database rights 2019 Ordnance Survey 100035207 02 March 2022 Production date:

APPENDIX 4 - BGS Records

LOG NUMBER 9WB 311

DRAGON DRILLING (WATER & ENERGY) LIMITED GRAIG LELO INDUSTRIAL ESTATE CORWEN **LL21 9SD** TEL: 01824 707777

SITE: Ready foods Ltd

JOB REFERENCE: 662

SITE BH NUMBER: 1

BGS No: sn17/129

GRID REF: SH49326260 DATE: 20/7/17

OPERATION	SIZE (MM)	FROM DEPTH (M)	TO DEPTH (M)	TOTAL	DEPTH (M)	DESCRIPTION	MATERIAL & DEPTH (M)
Set up	2			1	0-1.5	Soil and stones	
	1				1.5 - 7	Brown clay and stones	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Symmetrix drilling	198	GL	7.5	7.5	7 - 61	Dark grey fractured mudstone	Solid casing size - 113mm
Open hole drilling	150	7.5	61	53.5		·····	Solid casing size - 113mm Bentonite type – Granules
Mud drilling						Standing time 2 hours - Lightning storm	Slotted casing size - 113/1mm
CFA drilling	_						Gravel pack size - 6mm
Airlift		<u>.</u>		3		Water strike depths - 9, 12, 21, 36, 42, 55m	Glass media size - n/a

PREDICTED DEPTH (M)	ACTUAL DEPTH (M)	WATER STRIKE (MBGL)	LITRES PER MINUTE	SLOTTED (M)	PLAIN (M)	END CAP	GRAVEL/GLASS PACK (MBGL)	BENTONITE (MBGL)
60	61	Multiple	40	58 - 9	61 - 58 9 - GL	Yes	61 - 7.5	7.5 - GL

DRILLING FOR: Commercial water supply

NAME: Ben Ellison (LEAD DRILLER)

APPENDIX 5 - Groundsure Report

Order Details

Date:	02/03/2022					
Your ref:	EMS_763685_988368					
Our Ref:	EMS-763685_988368					

Client: emapsite

Site Details

Location:	249877 362597
Area:	2.05 ha
Authority:	Gwynedd County Council

Summary of findings	p. 2	Aerial image	р. 8
OS MasterMap site plan	p.13	groundsure.com/insightuserguide	

Contact us with any questions at: info@groundsure.com 08444 159 000

Ref: EMS-763685_988368 Your ref: EMS_763685_988368 Grid ref: 249877 362597

Summary of findings

Page	Section	Past land use	On site	0-50m	50-250m	250-500m	500-2000m
<u>14</u>	<u>1.1</u>	Historical industrial land uses	2	0	7	7	_
<u>15</u>	<u>1.2</u>	Historical tanks	0	1	1	7	_
<u>16</u>	<u>1.3</u>	Historical energy features	0	0	3	6	-
17	1.4	Historical petrol stations	0	0	0	0	-
<u>17</u>	<u>1.5</u>	Historical garages	0	1	3	0	-
17	1.6	Historical military land	0	0	0	0	-
Page	Section	Past land use - un-grouped	On site	0-50m	50-250m	250-500m	500-2000m
<u>18</u>	<u>2.1</u>	Historical industrial land uses	2	0	8	9	-
<u>19</u>	<u>2.2</u>	Historical tanks	0	1	2	18	-
<u>20</u>	<u>2.3</u>	Historical energy features	0	0	7	19	-
22	2.4	Historical petrol stations	0	0	0	0	-
<u>22</u>	<u>2.5</u>	Historical garages	0	1	4	0	-
Page	Section	Waste and landfill	On site	0-50m	50-250m	250-500m	500-2000m
<u>23</u>	<u>3.1</u>	Active or recent landfill	0	0	1	0	-
<u>24</u>	<u>3.2</u>	Historical landfill (BGS records)	0	0	0	1	-
<u>24</u>	<u>3.3</u>	Historical landfill (LA/mapping records)	0	0	1	0	-
<u>24</u>	<u>3.4</u>	Historical landfill (EA/NRW records)	0	0	1	1	-
<u>25</u>							
	<u>3.5</u>	Historical waste sites	1	2	3	0	-
27	<u>3.5</u> <u>3.6</u>	Historical waste sites	1 0	2 13	3 20	0 10	-
							-
<u>27</u>	<u>3.6</u>	Licensed waste sites	0	13	20	10	- - 500-2000m
<u>27</u> <u>39</u>	<u>3.6</u> <u>3.7</u>	Licensed waste sites Waste exemptions	0 13	13 1	20 45	10 2	- - 500-2000m -
27 39 Page	3.6 3.7 Section	<u>Licensed waste sites</u> <u>Waste exemptions</u> Current industrial land use	0 13 On site	13 1 0-50m	20 45 50-250m	10 2	- - 500-2000m -
27 39 Page 47	3.6 3.7 Section 4.1	Licensed waste sites Waste exemptions Current industrial land use Recent industrial land uses	0 13 On site 5	13 1 0-50m 5	20 45 50-250m 9	10 2 250-500m	- - 500-2000m - -
27 39 Page 47 49	3.6 3.7 Section 4.1 4.2	Licensed waste sites Waste exemptions Current industrial land use Recent industrial land uses Current or recent petrol stations	0 13 On site 5 0	13 1 0-50m 5 0	20 45 50-250m 9 0	10 2 250-500m - 0	- - 500-2000m - - -

<u>49</u>	<u>4.6</u>	Control of Major Accident Hazards (COMAH)	1	1	0	0	-
50	4.7	Regulated explosive sites	0	0	0	0	-
<u>50</u>	<u>4.8</u>	Hazardous substance storage/usage	0	2	2	0	-
51	4.9	Historical licensed industrial activities (IPC)	0	0	0	0	-
51	4.10	Licensed industrial activities (Part A(1))	0	0	0	0	-
<u>51</u>	<u>4.11</u>	Licensed pollutant release (Part A(2)/B)	0	0	1	1	-
52	4.12	Radioactive Substance Authorisations	0	0	0	0	-
<u>52</u>	<u>4.13</u>	Licensed Discharges to controlled waters	0	0	1	4	-
53	4.14	Pollutant release to surface waters (Red List)	0	0	0	0	-
53	4.15	Pollutant release to public sewer	0	0	0	0	-
53	4.16	List 1 Dangerous Substances	0	0	0	0	-
53	4.17	List 2 Dangerous Substances	0	0	0	0	-
<u>54</u>	<u>4.18</u>	Pollution Incidents (EA/NRW)	5	4	3	7	-
56	4.19	Pollution inventory substances	0	0	0	0	-
56	4.20	Pollution inventory waste transfers	0	0	0	0	-
56	4.21	Pollution inventory radioactive waste	0	0	0	0	-
Page	Section	Hydrogeology	On site	0-50m	50-250m	250-500m	500-2000m
<u>57</u>	<u>5.1</u>	Superficial aquifer	Identified (within 500m)		
<u>58</u>	<u>5.2</u>	Bedrock aquifer	Identified (within 500m)		
<u>60</u>	<u>5.3</u>	Groundwater vulnerability	Identified ((within 50m)			
61	5.4	Groundwater vulnerability- soluble rock risk	None (with	nin Om)			
61	5.5	Groundwater vulnerability- local information	None (with	nin Om)			
62	5.6	Groundwater abstractions	0	0	0	0	0
<u>63</u>	<u>5.7</u>	Surface water abstractions	0	0	0	0	9
<u>65</u>	<u>5.8</u>	Potable abstractions	0	0	0	0	3
66	5.9	Source Protection Zones	0	0	0	0	-
66	5.10	Source Protection Zones (confined aquifer)	0	0	0	0	-
Page	Section	Hydrology	On site	0-50m	50-250m	250-500m	500-2000m
	<u>6.1</u>	Water Network (OS MasterMap)	0	1	24		

<u>70</u>	<u>6.2</u>	Surface water features	0	1	11	-	-
<u>70</u>	<u>6.3</u>	WFD Surface water body catchments	1	-	-	-	-
<u>70</u>	<u>6.4</u>	WFD Surface water bodies	0	0	1	_	-
<u>71</u>	<u>6.5</u>	WFD Groundwater bodies	1	-	-	-	-
Page	Section	River and coastal flooding	On site	0-50m	50-250m	250-500m	500-2000m
72	7.1	Risk of flooding from rivers and the sea	None (with	in 50m)			
72	7.2	Historical Flood Events	0	0	0	-	-
72	7.3	Flood Defences	0	0	0	-	-
73	7.4	Areas Benefiting from Flood Defences	0	0	0	-	-
73	7.5	Flood Storage Areas	0	0	0	_	-
74	7.6	Flood Zone 2	None (with	in 50m)			
74	7.7	Flood Zone 3	None (with	in 50m)			
Page	Section	Surface water flooding					
<u>75</u>	<u>8.1</u>	Surface water flooding	1 in 30 yea	r, 0.1m - 0.3r	n (within 50	m)	
Page	Section	Groundwater flooding					
<u>77</u>	<u>9.1</u>	Groundwater flooding	Low (withir	ו 50m)			
77 Page	<u>9.1</u> Section	<u>Groundwater flooding</u> Environmental designations	Low (withir On site	n 50m) 0-50m	50-250m	250-500m	500-2000m
					50-250m ()	250-500m 0	500-2000m 2
Page	Section	Environmental designations	On site	0-50m			
Page <u>78</u>	Section <u>10.1</u>	Environmental designations <u>Sites of Special Scientific Interest (SSSI)</u>	On site O	0-50m ()	0	0	2
Page 78 79	Section <u>10.1</u> 10.2	Environmental designations Sites of Special Scientific Interest (SSSI) Conserved wetland sites (Ramsar sites)	On site O O	0-50m 0 0	0	0	2 0
Page <u>78</u> 79 <u>79</u>	Section <u>10.1</u> 10.2 <u>10.3</u>	Environmental designations Sites of Special Scientific Interest (SSSI) Conserved wetland sites (Ramsar sites) Special Areas of Conservation (SAC)	On site 0 0 0	0-50m 0 0	0 0 0	0 0 0	2 0 1
Page 78 79 79 79	Section <u>10.1</u> 10.2 <u>10.3</u> 10.4	Environmental designations Sites of Special Scientific Interest (SSSI) Conserved wetland sites (Ramsar sites) Special Areas of Conservation (SAC) Special Protection Areas (SPA)	On site 0 0 0 0 0 0	0-50m 0 0 0	0 0 0 0	0 0 0 0	2 0 1 0
Page 78 79 79 79 79	Section <u>10.1</u> 10.2 <u>10.3</u> 10.4 10.5	Environmental designations Sites of Special Scientific Interest (SSSI) Conserved wetland sites (Ramsar sites) Special Areas of Conservation (SAC) Special Protection Areas (SPA) National Nature Reserves (NNR)	On site 0 0 0 0 0 0 0 0 0	0-50m 0 0 0 0	0 0 0 0	0 0 0 0 0	2 0 1 0 0
Page 78 79 79 79 80 80	Section <u>10.1</u> 10.2 <u>10.3</u> 10.4 10.5 10.6	Environmental designations Sites of Special Scientific Interest (SSSI) Conserved wetland sites (Ramsar sites) Special Areas of Conservation (SAC) Special Protection Areas (SPA) National Nature Reserves (NNR) Local Nature Reserves (LNR)	On site 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0-50m 0 0 0 0 0		0 0 0 0 0 0	2 0 1 0 0 0
Page 78 79 79 79 80 80 80 80	Section 10.1 10.2 10.3 10.4 10.5 10.6 10.6 10.7	Environmental designations Sites of Special Scientific Interest (SSSI) Conserved wetland sites (Ramsar sites) Special Areas of Conservation (SAC) Special Protection Areas (SPA) National Nature Reserves (NNR) Local Nature Reserves (LNR) Designated Ancient Woodland	On site 0 0 0 0 0 0 0 0 0	0-50m 0 0 0 0 0 0	0 0 0 0 0 0 2	0 0 0 0 0 0 2	2 0 1 0 0 0 16
Page 78 79 79 79 80 80 80 80 81	Section 10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8 	Environmental designations Sites of Special Scientific Interest (SSSI) Conserved wetland sites (Ramsar sites) Special Areas of Conservation (SAC) Special Protection Areas (SPA) National Nature Reserves (NNR) Local Nature Reserves (LNR) Designated Ancient Woodland Biosphere Reserves	On site 0 0 0 0 0 0 0 0 0	0-50m 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 2 0	0 0 0 0 0 0 2 0	2 0 1 0 0 0 16 0
Page 78 79 79 79 80 80 80 81 81	Section 10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8 10.9 	Environmental designationsSites of Special Scientific Interest (SSSI)Conserved wetland sites (Ramsar sites)Special Areas of Conservation (SAC)Special Protection Areas (SPA)National Nature Reserves (NNR)Local Nature Reserves (LNR)Designated Ancient WoodlandBiosphere ReservesForest Parks	On site 0 0 0 0 0 0 0 0 0	0-50m 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 2 0 0	0 0 0 0 0 0 2 0 0	2 0 1 0 0 0 16 0 0

 89 Page 90 90 90 90 90 90 90 91 92 	12.5 Section 13.1 13.2 13.3 13.4 Section 14.1 14.2	Countryside Stewardship Schemes Habitat designations Priority Habitat Inventory Habitat Networks Open Mosaic Habitat Limestone Pavement Orders Geology 1:10,000 scale 10k Availability Artificial and made ground (10k)	0 On site O O On site O O O O O O O O O O O O O O O O O O O	0 0-50m 0 0 0 0 0 0 0 0 within 500m	0 50-250m 0 0 0 0 50-250m)	- 250-500m - - - - 250-500m	- 500-2000m - - - 500-2000m
89 Page 90 90 90 90 Page	Section 13.1 13.2 13.3 13.4 Section	Habitat designationsPriority Habitat InventoryHabitat NetworksOpen Mosaic HabitatLimestone Pavement OrdersGeology 1:10,000 scale	On site 0 0 0 0 0 0	0-50m 0 0 0 0 0	50-250m 0 0 0 0 0 50-250m		
89 Page 90 90 90 90	Section 13.1 13.2 13.3 13.4	Habitat designations Priority Habitat Inventory Habitat Networks Open Mosaic Habitat Limestone Pavement Orders	On site 0 0 0 0	0-50m 0 0 0	50-250m 0 0 0		
89 Page 90 90 90	Section 13.1 13.2 13.3	Habitat designations Priority Habitat Inventory Habitat Networks Open Mosaic Habitat	On site 0 0 0	0-50m 0 0	50-250m 0 0	- 250-500m - - -	- 500-2000m - - -
89 Page 90 90	Section 13.1 13.2	Habitat designations Priority Habitat Inventory Habitat Networks	On site 0 0	0-50m 0 0	50-250m 0 0	- 250-500m - -	- 500-2000m - -
89 Page 90	Section 13.1	Habitat designations Priority Habitat Inventory	On site O	0-50m 0	50-250m 0	- 250-500m -	- 500-2000m -
89 Page	Section	Habitat designations	On site	0-50m	50-250m	- 250-500m -	- 500-2000m -
89						- 250-500m	- 500-2000m
	12.5	Countryside Stewardship Schemes	0	0	0	-	-
89	12.4	Environmental Stewardship Schemes	0	0	0	_	_
89	12.3	Tree Felling Licences	0	0	0	-	-
88	12.2	Open Access Land	0	0	0	_	-
<u>87</u>	<u>12.1</u>	Agricultural Land Classification	Grade 4 (w	ithin 250m)			
Page	Section	Agricultural designations	On site	0-50m	50-250m	250-500m	500-2000m
86	11.7	Registered Parks and Gardens	0	0	0	-	-
86	11.6	Scheduled Ancient Monuments	0	0	0	-	-
86	11.5	Conservation Areas	0	0	0	-	-
85	11.4	Listed Buildings	0	0	0	_	-
85	11.3	National Parks	0	0	0	_	-
85	11.2	Area of Outstanding Natural Beauty	0	0	0	_	-
85	11.1	World Heritage Sites	0	0	0	_	-
Page	Section	Visual and cultural designations	On site	0-50m	50-250m	250-500m	500-2000m
84	10.18	SSSI Units	0	0	0	0	0
84	10.17	SSSI Impact Risk Zones	0	-	-	-	-
83	10.16	Nitrate Vulnerable Zones	0	0	0	0	0
83	10.15	Nitrate Sensitive Areas	0	0	0	0	0
02	10.14	Potential Special Protection Areas (pSPA)	0	0	0	0	0
82 82	10.13	Possible Special Areas of Conservation (pSAC)					

93	14.4	Landslip (10k)	0	0	0	0	-
94	14.5	Bedrock geology (10k)	0	0	0	0	-
94	14.6	Bedrock faults and other linear features (10k)	0	0	0	0	-
Page	Section	Geology 1:50,000 scale	On site	0-50m	50-250m	250-500m	500-2000m
<u>95</u>	<u>15.1</u>	50k Availability	Identified (within 500m)		
96	15.2	Artificial and made ground (50k)	0	0	0	0	-
96	15.3	Artificial ground permeability (50k)	0	0	-	-	-
<u>97</u>	<u>15.4</u>	Superficial geology (50k)	1	0	1	6	-
<u>98</u>	<u>15.5</u>	Superficial permeability (50k)	Identified (within 50m)			
<u>98</u>	<u>15.6</u>	Landslip (50k)	0	0	0	1	-
99	15.7	Landslip permeability (50k)	None (with	in 50m)			
<u>100</u>	<u>15.8</u>	Bedrock geology (50k)	1	0	0	0	-
<u>101</u>	<u>15.9</u>	Bedrock permeability (50k)	Identified (within 50m)			
101	15.10	Bedrock faults and other linear features (50k)	0	0	0	0	-
Page	Section	Boreholes	On site	0-50m	50-250m	250-500m	500-2000m
					0		
102	16.1	BGS Boreholes	0	0	0	-	-
102 Page	16.1 Section	BGS Boreholes Natural ground subsidence	0	0	0	-	-
				0 (within 50m)		-	-
Page	Section	Natural ground subsidence	Negligible (-	-
Page <u>103</u>	Section <u>17.1</u>	Natural ground subsidence Shrink swell clays	Negligible (Very low (v	(within 50m)		-	-
Page <u>103</u> <u>104</u>	Section <u>17.1</u> <u>17.2</u>	Natural ground subsidence Shrink swell clays Running sands	Negligible (Very low (v	(within 50m) vithin 50m) (within 50m)		-	-
Page 103 104 106	Section 17.1 17.2 17.3	Natural ground subsidence Shrink swell clays Running sands Compressible deposits	Negligible (Very low (v Negligible ((within 50m) vithin 50m) (within 50m) vithin 50m)		-	-
Page 103 104 106 107	Section 17.1 17.2 17.3 17.4	Natural ground subsidence Shrink swell clays Running sands Compressible deposits Collapsible deposits	Negligible (Very low (v Negligible (Very low (v Low (within	(within 50m) vithin 50m) (within 50m) vithin 50m)		-	-
Page 103 104 106 107 108	Section 17.1 17.2 17.3 17.4 17.5	Natural ground subsidence Shrink swell clays Running sands Compressible deposits Collapsible deposits Landslides	Negligible (Very low (v Negligible (Very low (v Low (within	(within 50m) vithin 50m) (within 50m) vithin 50m) n 50m)		- 250-500m	- 500-2000m
Page 103 104 106 107 108 110	Section 17.1 17.2 17.3 17.4 17.5 17.6	Natural ground subsidence Shrink swell clays Running sands Compressible deposits Collapsible deposits Landslides Ground dissolution of soluble rocks	Negligible (Very low (v Negligible (Very low (v Low (within Negligible ((within 50m) vithin 50m) (within 50m) vithin 50m) n 50m) (within 50m)		- 250-500m	- 500-2000m
Page 103 104 106 107 108 110 Page	Section 17.1 17.2 17.3 17.4 17.5 17.6 Section	Natural ground subsidenceShrink swell claysRunning sandsCompressible depositsCollapsible depositsLandslidesGround dissolution of soluble rocksMining, ground workings and natural cavities	Negligible (Very low (v Negligible (Very low (v Low (within Negligible (On site	(within 50m) vithin 50m) (within 50m) vithin 50m) n 50m) (within 50m) 0-50m	50-250m		- 500-2000m
Page 103 104 106 107 108 110 Page 112	Section 17.1 17.2 17.3 17.4 17.5 17.6 Section	Natural ground subsidenceShrink swell claysRunning sandsCompressible depositsCollapsible depositsLandslidesGround dissolution of soluble rocksMining, ground workings and natural cavitiesNatural cavities	Negligible (Very low (v Negligible (Very low (v Low (within Negligible (On site	(within 50m) vithin 50m) (within 50m) vithin 50m) n 50m) (within 50m) 0-50m 0	50-250m 0	0	- 500-2000m - -
Page 103 104 106 107 108 110 Page 112 113	Section 17.1 17.2 17.3 17.4 17.5 17.6 Section 18.1 18.2	Natural ground subsidenceShrink swell claysRunning sandsCompressible depositsCollapsible depositsLandslidesGround dissolution of soluble rocksMining, ground workings and natural cavitiesNatural cavitiesBritPits	Negligible (Very low (v Negligible (Very low (v Low (within Negligible (On site 0 0	(within 50m) vithin 50m) (within 50m) vithin 50m) n 50m) (within 50m) 0-50m 0 0	50-250m 0 0	0	- 500-2000m - - - 0

11418.7Mining averais000000011418.8JP mining areasNone (with i or i):IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	<u>114</u>	<u>18.6</u>	Non-coal mining	1	1	0	0	1
11518.9Coal miningNone (with Um)11518.10Brine areasNone (with Um)11518.11Gypsum areasNone (with Um)11518.12In miningNone (with Um)11518.12In miningNone (with Um)11618.13Cay miningNone (with Um)11718.14Cay miningNone (with Um)11818.13Cay miningNone (with Um)11918.14Cay miningNone (with Um)11918.14Cay miningNone (with Um)11118.14Cay miningNone (with Um)112SectionSoli chemistryOn site9250m2050m11420.4BSE Stimated Background Soil Chemistry000011720.3BGS Restimated DropectsOn site9250m2050m6011821.4Inderground railways (London)0000011921.4Inderground railways (London)00000011921.4Istorical railway and tunnel features00000011921.5Railway Infrastructores000000011921.4Historical railway and tunnel features00000011921.4Railway Infrastructores000000011921.4Rail	114	18.7	Mining cavities	0	0	0	0	0
115.18.10Brine areasNone (with ")115.18.10Gypsum areasNone (with ")115.18.12In miningNone (with ")115.18.13Cay miningNone (with ")116.18.14Cay miningNone (with ")117.18.13Cay miningNone (with ")118.RadonRadonNone (with ")119.19.14RadonLess that "	114	18.8	JPB mining areas	None (with	in 0m)			
11518.11Gypsum areasNone (with With With With With With With With W	115	18.9	Coal mining	None (with	in 0m)			
11518.12Tin miningNone (with-increases)11518.13Clay miningNone (with-increases)11618.14Clay miningNone (with-increases)117SectionRadonExest that within the section of the se	115	18.10	Brine areas	None (with	in Om)			
11518.13Clay miningNone (with with with with with with with with	115	18.11	Gypsum areas	None (with	in Om)			
PageSectionRadon11619.1RadonLess that-U-U-U-U-U-U-U-U-U-U-U-U-U-U-U-U-U-U-U	115	18.12	Tin mining	None (with	in Om)			
1.1.19.1RadonLess that-Viethin UNPageSectionSoil chemistryOn site0-50m\$0-200m\$0-200m11720.1BGS Estimated Background Soil Chemistry2111720.2BGS Estimated Urban Soil Chemistry00011720.3BGS Measured Urban Soil Chemistry00011821.0Inderground railways (London)On site0.50m00-200m00011821.1Underground railways (Non-London)0000011921.3Railway tunnels0000011921.4Historical railway and tunnel features0000011921.5Royal Mail tunnels00000011921.6Kistorical railway and tunnel features0000011921.6Royal Mail tunnels00000012021.6Kistorical railway00000012121.6Kistorical railway00000012121.6Kistorical railway0000000- </td <td>115</td> <td>18.13</td> <td>Clay mining</td> <td>None (with</td> <td>in Om)</td> <td></td> <td></td> <td></td>	115	18.13	Clay mining	None (with	in Om)			
PageSectionSoil chemistryOn site0-50m50-200m250-50m50-200m11720.1BGS Estimated Background Soil Chemistry2111720.2BGS Estimated Urban Soil Chemistry0011720.3BGS Measured Urban Soil Chemistry00PageSectionRailway infrastructure and projectsOn site0-50m50-200m50-200m11821.1Underground railways (London)00011921.3Railway tunnels00011921.4Historical railway and tunnel features00011921.5Royal Mail tunnels00011921.6Historical railways00011921.4Forsaril 100011921.5Royal Mail tunnels00112021.7Railways00012021.8Crossrail 10000-12021.9Crossrail 20000-	Page	Section	Radon					
NgeJoe CerteinJoe Certein (1)Joe Ce	<u>116</u>	<u>19.1</u>	Radon	Less than 1	% (within On	n)		
11720.2BGS Estimated Urban Soil Chemistry0011720.3BGS Measured Urban Soil Chemistry000PageSectionRailway infrastructure and projectsOn siteOrsm50-200m50-200m50-200m11821.1Underground railways (London)000011921.3Railway tunnels000011921.4Historical railway and tunnel features000011921.5Royal Mail tunnels000012021.7RailwaysRoing Call Call Call Call Call Call Call Cal	Page	Section	Soil chemistry	On site	0-50m	50-250m	250-500m	500-2000m
11720.3BGS Measured Urban Soil Chemistry000PageSectionRailway infrastructure and projectsOn site0-som50-200m50-200m11821.1Underground railways (London)00011821.2Underground railways (Non-London)000011921.3Railway tunnels000011921.4Historical railway and tunnel features000011921.5Royal Mail tunnels000012021.7RailwaysConseril Calledon00012021.8Crossrail 10000012021.9Crossrail 200000012021.9Crossrail 200000012021.9Crossrail 200000012021.9Crossrail 200000012021.9Crossrail 200000012021.9Crossrail 2000000	<u>117</u>	<u>20.1</u>	BGS Estimated Background Soil Chemistry	2	1	-	-	-
PageSectionRailway infrastructure and projectsOn site0-50m50-250m250-50m50-200m11821.1Underground railways (London)00011821.2Underground railways (Non-London)000011921.3Railway tunnels000011921.4Historical railway and tunnel features00011921.5Royal Mail tunnels00012021.7RailwaysCrossrail 100012021.8Crossrail 20000	117	20.2	BGS Estimated Urban Soil Chemistry	0	0	-	-	-
1 alge Decision Name of the projects 118 21.1 Underground railways (London) 0 0 0 - 118 21.2 Underground railways (Non-London) 0 0 0 - - 119 21.3 Railway tunnels 0 0 0 - - 119 21.4 Historical railway and tunnel features 0 0 0 - - 119 21.5 Royal Mail tunnels 0 0 0 - - 119 21.5 Royal Mail tunnels 0 0 0 - - 119 21.6 Historical railways 0 0 0 - - 119 21.6 Historical railways 0 0 0 - - 120 21.7 Railways 0 0 0 0 - - 120 21.8 Crossrail 1 0 0 0 0 - - 120 21.9 Crossrail 2 0 0 <td< td=""><td>117</td><td>20.3</td><td>BGS Measured Urban Soil Chemistry</td><td>0</td><td>0</td><td>-</td><td>-</td><td>-</td></td<>	117	20.3	BGS Measured Urban Soil Chemistry	0	0	-	-	-
11821.2Underground railways (Non-London)000011921.3Railway tunnels000011921.4Historical railway and tunnel features000011921.5Royal Mail tunnels000011921.6Historical railways000112021.7Railways000012021.8Crossrail 11000012021.9Crossrail 200000	Page	Section	Railway infrastructure and projects	On site	0-50m	50-250m	250-500m	500-2000m
11921.3Railway tunnels00011921.4Historical railway and tunnel features00011921.5Royal Mail tunnels000011921.6Historical railways000112021.7Railways000012021.8Crossrail 1000012021.9Crossrail 20000	118	21.1	Underground railways (London)	0	0	0	-	-
11921.4Historical railway and tunnel features00011921.5Royal Mail tunnels000011921.6Historical railways000112021.7Railways000012021.8Crossrail 100000-12021.9Crossrail 200000-	118	21.2	Underground railways (Non-London)	0	0	0	-	-
119 21.5 Royal Mail tunnels 0 0 0 - - 119 21.6 Historical railways 0 0 1 - - 120 21.7 Railways 0 0 0 0 - - 120 21.8 Crossrail 1 0 0 0 0 - - 120 21.9 Crossrail 2 0 0 0 0 - -	119	21.3	Railway tunnels	0	0	0	-	-
119 21.6 Historical railways 0 0 1 - - 120 21.7 Railways 0 0 0 0 - - 120 21.8 Crossrail 1 0 0 0 0 0 - - 120 21.9 Crossrail 2 0 0 0 0 - -	119	21.4	Historical railway and tunnel features	0	0	0	-	-
120 21.7 Railways 0 0 0 - - 120 21.8 Crossrail 1 0 0 0 0 0 - 120 21.9 Crossrail 2 0 0 0 0 - -	119	21.5	Royal Mail tunnels	0	0	0	_	-
120 21.8 Crossrail 1 0 0 0 0 - 120 21.9 Crossrail 2 0 0 0 0 -	<u>119</u>	<u>21.6</u>	Historical railways	0	0	1	_	-
120 21.9 Crossrail 2 0 0 0 -	120	21.7	Railways	0	0	0	_	-
	120	21.8	Crossrail 1	0	0	0	0	-
120 21.10 HS2 0 0 0 -	120	21.9	Crossrail 2	0	0	0	0	-
	120	21.10	HS2	0	0	0	0	-

Recent aerial photograph

Capture Date: 06/06/2018 Site Area: 2.05ha

Recent site history - 2016 aerial photograph

Capture Date: 12/05/2016 Site Area: 2.05ha

Recent site history - 2013 aerial photograph

Capture Date: 04/06/2013 Site Area: 2.05ha

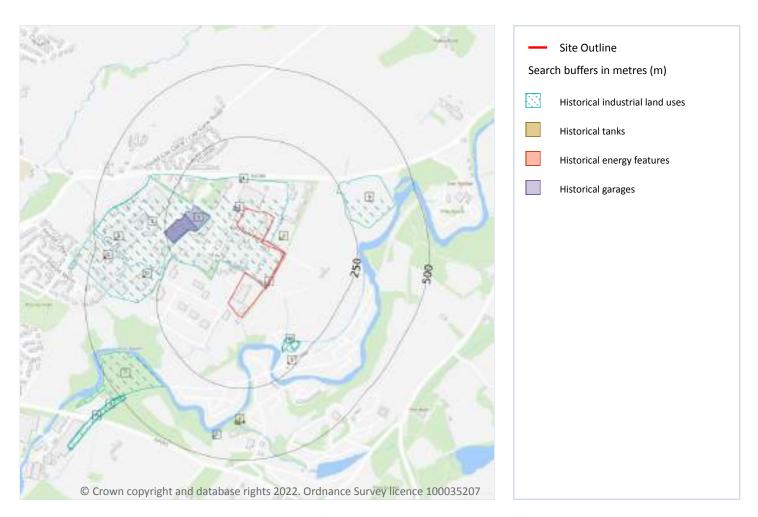
Recent site history - 2009 aerial photograph

Capture Date: 11/05/2009 Site Area: 2.05ha

Recent site history - 2000 aerial photograph

Capture Date: 21/07/2000 Site Area: 2.05ha

OS MasterMap site plan


Site Area: 2.05ha

1 Past land use

1.1 Historical industrial land uses

Records within 500m

16

Potentially contaminative land use features digitised from historical Ordnance Survey mapping at 1:10,000 and 1:10,560 scale, intelligently grouped into contiguous features. To prevent misrepresentation of the size of historical features at any given time, features are only grouped if they have similar geometries within immediately preceding or succeeding map editions. See section 2 for a breakdown of grouping if required. Grouped and the original un-grouped features can be cross-referenced across sections 1 and 2 using the 'Group ID'.

Features are displayed on the Past land use map on page 14

ID	Location	Land use	Dates present	Group ID
1	On site	Pumping Station	1990	211341

ID	Location	Land use	Dates present	Group ID
А	On site	Industrial Estate	1990	222435
5	96m W	Industrial Estate	1976	241316
В	164m SE	Unspecified Old Mill	1949	233166
В	164m SE	Flour Mill	1888 - 1899	232289
В	164m SE	Unspecified Old Mill	1913	237320
В	189m SE	Unspecified Commercial/Industrial	1976	217848
В	189m SE	Unspecified Old Mill	1959	229286
6	236m E	Refuse Heap	1976	222083
7	359m SW	Unspecified Disused Tip	1990	219176
Е	360m S	Unspecified Tank	1976 - 1990	243614
F	424m S	Unspecified Tank	1976 - 1990	248524
Н	486m SW	Cuttings	1949	235742
9	488m SW	Cuttings	1888	242122
Н	490m SW	Cuttings	1913	225272
Н	498m SW	Cuttings	1959	247701

This data is sourced from Ordnance Survey / Groundsure.

1.2 Historical tanks

Records within 500m

Tank features digitised from historical Ordnance Survey mapping at high-detail 1:1,250 and 1:2,500 scale, intelligently grouped into contiguous features. To prevent misrepresentation of the size of historical features at any given time, features are only grouped if they have similar geometries within immediately preceding or succeeding map editions. See section 2 for a breakdown of grouping if required. Grouped and the original ungrouped features can be cross-referenced across sections 1 and 2 using the 'Group ID'.

Features are displayed on the Past land use map on page 14

ID	Location	Land use	Dates present	Group ID
3	28m NE	Tanks	1995	31204
А	132m W	Unspecified Tank	1994 - 1995	32142
D	306m W	Unspecified Tank	1982	31813

Contact us with any questions at: info@groundsure.com 08444 159 000

ID	Location	Land use	Dates present	Group ID
D	307m W	Unspecified Tank	1980 - 1995	32870
Е	361m S	Unspecified Tank	1980 - 1995	32361
Е	362m S	Unspecified Tank	1971	31947
Е	362m S	Unspecified Tank	1982	32091
F	424m S	Unspecified Tank	1964 - 1987	32523
F	427m S	Unspecified Tank	1995	32090

This data is sourced from Ordnance Survey / Groundsure.

1.3 Historical energy features

Records within 500m

Energy features digitised from historical Ordnance Survey mapping at high-detail 1:1,250 and 1:2,500 scale, intelligently grouped into contiguous features. To prevent misrepresentation of the size of historical features at any given time, features are only grouped if they have similar geometries within immediately preceding or succeeding map editions. See section 2 for a breakdown of grouping if required. Grouped and the original ungrouped features can be cross-referenced across sections 1 and 2 using the 'Group ID'.

Features are displayed on the Past land use map on page 14

ID	Location	Land use	Dates present	Group ID
4	92m N	Electricity Substation	1982 - 1995	17243
С	226m SE	Electricity Substation	1995	15672
С	235m SE	Electricity Substation	1989 - 1994	16185
Е	362m S	Electricity Substation	1980 - 1994	16469
Е	363m S	Electricity Substation	1971	16181
Е	368m S	Electricity Substation	1982 - 1995	16919
8	422m W	Electricity Substation	1971 - 1995	16507
G	457m W	Electricity Substation	1986 - 1994	16820
G	461m W	Electricity Substation	1995	17142

This data is sourced from Ordnance Survey / Groundsure.

1.4 Historical petrol stations

Records within 500m

Petrol stations digitised from historical Ordnance Survey mapping at high-detail 1:1,250 and 1:2,500 scale, intelligently grouped into contiguous features. To prevent misrepresentation of the size of historical features at any given time, features are only grouped if they have similar geometries within immediately preceding or succeeding map editions. See section 2 for a breakdown of grouping if required. Grouped and the original ungrouped features can be cross-referenced across sections 1 and 2 using the 'Group ID'.

This data is sourced from Ordnance Survey / Groundsure.

1.5 Historical garages

Records within 500m

Garages digitised from historical Ordnance Survey mapping at high-detail 1:1,250 and 1:2,500 scale, intelligently grouped into contiguous features. To prevent misrepresentation of the size of historical features at any given time, features are only grouped if they have similar geometries within immediately preceding or succeeding map editions. See section 2 for a breakdown of grouping if required. Grouped and the original ungrouped features can be cross-referenced across sections 1 and 2 using the 'Group ID'.

Features are displayed on the Past land use map on page 14

ID	Location	Land use	Dates present	Group ID
2	16m NW	Garage	1982	5078
А	99m W	Vehicle Testing Station	1995	5184
А	138m W	Vehicle Testing Station	1982	5215
А	138m W	Vehicle Testing Station	1986 - 1994	5680

This data is sourced from Ordnance Survey / Groundsure.

1.6 Historical military land

Records within 500m	0
Areas of military land digitised from multiple sources including the National Archives, local records, M	/OD
records and verified other sources, intelligently grouped into contiguous features.	

This data is sourced from Ordnance Survey / Groundsure / other sources.

0

2 Past land use - un-grouped

2.1 Historical industrial land uses

Records within 500m

Potentially contaminative land use features digitised from historical Ordnance Survey mapping at 1:10,000 and 10,560 scale. Any records shown are available intelligently grouped in section 1. Grouped and the original ungrouped features can be cross-referenced across sections 1 and 2 using the 'Group ID'.

Features are displayed on the Past land use - un-grouped map on page 18

ID	Location	Land Use	Date	Group ID
1	On site	Pumping Station	1990	211341
Α	On site	Industrial Estate	1990	222435
Л	96m W	Industrial Estate	1976	241316

ID	Location	Land Use	Date	Group ID
С	164m SE	Unspecified Old Mill	1949	233166
С	164m SE	Unspecified Old Mill	1913	237320
С	164m SE	Flour Mill	1899	232289
С	164m SE	Flour Mill	1888	232289
С	189m SE	Unspecified Commercial/Industrial	1976	217848
С	189m SE	Unspecified Old Mill	1959	229286
5	236m E	Refuse Heap	1976	222083
6	359m SW	Unspecified Disused Tip	1990	219176
F	360m S	Unspecified Tank	1976	243614
F	363m S	Unspecified Tank	1990	243614
Н	424m S	Unspecified Tank	1990	248524
Н	424m S	Unspecified Tank	1976	248524
J	486m SW	Cuttings	1949	235742
7	488m SW	Cuttings	1888	242122
J	490m SW	Cuttings	1913	225272
J	498m SW	Cuttings	1959	247701

This data is sourced from Ordnance Survey / Groundsure.

2.2 Historical tanks

Records within 500m	21
---------------------	----

Tank features digitised from historical Ordnance Survey mapping at high-detail 1:1,250 and 1:2,500 scale. Any records shown are available intelligently grouped in section 1. Grouped and the original un-grouped features can be cross-referenced across sections 1 and 2 using the 'Group ID'.

Features are displayed on the Past land use - un-grouped map on page 18

ID	Location	Land Use	Date	Group ID
3	28m NE	Tanks	1995	31204
А	132m W	Unspecified Tank	1994	32142
А	134m W	Unspecified Tank	1995	32142
Е	306m W	Unspecified Tank	1982	31813

ID	Location	Land Use	Date	Group ID
Е	307m W	Unspecified Tank	1995	32870
Е	307m W	Unspecified Tank	1980	32870
Е	307m W	Unspecified Tank	1994	32870
Е	307m W	Unspecified Tank	1986	32870
Е	307m W	Unspecified Tank	1980	32870
F	361m S	Unspecified Tank	1980	32361
F	361m S	Unspecified Tank	1994	32361
F	361m S	Unspecified Tank	1986	32361
F	361m S	Unspecified Tank	1980	32361
F	362m S	Unspecified Tank	1982	32091
F	362m S	Unspecified Tank	1971	31947
F	362m S	Unspecified Tank	1971	31947
F	362m S	Unspecified Tank	1995	32361
Н	424m S	Unspecified Tank	1964	32523
Н	424m S	Unspecified Tank	1987	32523
Н	424m S	Unspecified Tank	1965	32523
Н	427m S	Unspecified Tank	1995	32090

This data is sourced from Ordnance Survey / Groundsure.

2.3 Historical energy features

Records within 500m

Energy features digitised from historical Ordnance Survey mapping at high-detail 1:1,250 and 1:2,500 scale. Any records shown are available intelligently grouped in section 1. Grouped and the original un-grouped features can be cross-referenced across sections 1 and 2 using the 'Group ID'.

Features are displayed on the Past land use - un-grouped map on page 18

ID	Location	Land Use	Date	Group ID
В	92m N	Electricity Substation	1994	17243
В	92m N	Electricity Substation	1986	17243
В	93m N	Electricity Substation	1995	17243

Contact us with any questions at: info@groundsure.com 08444 159 000

ID	Location	Land Use	Date	Group ID
В	93m N	Electricity Substation	1982	17243
D	226m SE	Electricity Substation	1995	15672
D	235m SE	Electricity Substation	1994	16185
D	235m SE	Electricity Substation	1989	16185
F	362m S	Electricity Substation	1980	16469
F	362m S	Electricity Substation	1994	16469
F	362m S	Electricity Substation	1986	16469
F	362m S	Electricity Substation	1980	16469
F	363m S	Electricity Substation	1971	16181
F	363m S	Electricity Substation	1971	16181
F	368m S	Electricity Substation	1995	16919
F	369m S	Electricity Substation	1982	16919
G	422m W	Electricity Substation	1982	16507
G	422m W	Electricity Substation	1971	16507
G	422m W	Electricity Substation	1971	16507
G	423m W	Electricity Substation	1980	16507
G	423m W	Electricity Substation	1994	16507
G	423m W	Electricity Substation	1986	16507
G	423m W	Electricity Substation	1980	16507
G	423m W	Electricity Substation	1995	16507
l	457m W	Electricity Substation	1994	16820
I	457m W	Electricity Substation	1986	16820
I	461m W	Electricity Substation	1995	17142

This data is sourced from Ordnance Survey / Groundsure.

2.4 Historical petrol stations

Records within 500m

Petrol stations digitised from historical Ordnance Survey mapping at high-detail 1:1,250 and 1:2,500 scale. Any records shown are available intelligently grouped in section 1. Grouped and the original un-grouped features can be cross-referenced across sections 1 and 2 using the 'Group ID'.

This data is sourced from Ordnance Survey / Groundsure.

2.5 Historical garages

Records within 500m

Garages digitised from historical Ordnance Survey mapping at high-detail 1:1,250 and 1:2,500 scale. Any records shown are available intelligently grouped in section 1. Grouped and the original un-grouped features can be cross-referenced across sections 1 and 2 using the 'Group ID'.

Features are displayed on the Past land use - un-grouped map on page 18

ID	Location	Land Use	Date	Group ID
2	16m NW	Garage	1982	5078
А	99m W	Vehicle Testing Station	1995	5184
А	138m W	Vehicle Testing Station	1982	5215
А	138m W	Vehicle Testing Station	1994	5680
А	138m W	Vehicle Testing Station	1986	5680

This data is sourced from Ordnance Survey / Groundsure.

0

3 Waste and landfill

3.1 Active or recent landfill

Records within 500m

Active or recently closed landfill sites under Environment Agency/Natural Resources Wales regulation. Features are displayed on the Waste and landfill map on **page 23**

ID	Location	Details	
G	237m NE	Operator: Watkin Jones & Son Ltd Site Address: Pontrug, Nantlle, Caernarfon, Gwynedd, LL55 2BF	WML Number: 37061 EPR Reference: WAT002 Landfill type: A5 : Landfill taking Non-Biodegradeable Wastes Status: Closure IPPC Reference: - EPR Number: EAEPR\EA/EPR/XP3094FS/A001

1

This data is sourced from the Environment Agency and Natural Resources Wales.

3.2 Historical landfill (BGS records)

Records within 500m

Landfill sites identified on a survey carried out on behalf of the DoE in 1973. These sites may have been closed or operational at this time.

Features are displayed on the Waste and landfill map on page 23

ID	Location	Address	BGS Number	Risk	Waste Type
G	348m E	Council Refuse Tip, Rhosbodvral, Caernarvon	1953	No risk to aquifer	N/A

This data is sourced from the British Geological Survey.

3.3 Historical landfill (LA/mapping records)

F	ecords within 500m		1

Landfill sites identified from Local Authority records and high detail historical mapping.

Features are displayed on the Waste and landfill map on page 23

ID	Location	Site address	Source	Data type
G	236m E	Refuse Tip	1971 mapping	Polygon

This data is sourced from the Ordnance Survey/Groundsure and Local Authority records.

3.4 Historical landfill (EA/NRW records)

Records within 500m	2

Known historical (closed) landfill sites (e.g. sites where there is no PPC permit or waste management licence currently in force). This includes sites that existed before the waste licensing regime and sites that have been licensed in the past but where a licence has been revoked, ceased to exist or surrendered and a certificate of completion has been issued.

Features are displayed on the Waste and landfill map on page 23

ID	Location	Details		
G	236m E	Site Address: Council Refuse Tip Licence Holder Address: -	Waste Licence: - Site Reference: - Waste Type: Inert, Industrial, Commercial, Household Environmental Permitting Regulations (Waste) Reference: - Licence Issue: - Licence Surrender: -	Operator: Caernarvon Royal Borough Council Licence Holder: County Council First Recorded 31/12/1954 Last Recorded: 31/12/1974
6	365m SW	Site Address: Peblig Mill Tip Licence Holder Address: -	Waste Licence: - Site Reference: - Waste Type: Inert, Industrial Environmental Permitting Regulations (Waste) Reference: - Licence Issue: - Licence Surrender: -	Operator: - Licence Holder: - First Recorded 31/12/1981 Last Recorded: 31/12/1990

This data is sourced from the Environment Agency and Natural Resources Wales.

3.5 Historical waste sites

Records within 500m 6

Waste site records derived from Local Authority planning records and high detail historical mapping.

Features are displayed on the Waste and landfill map on page 23

ID	Location	Address	Further Details	Date
1	On site	Site Address: Coal Yard,Lon Hen Felin Stad, Cibyn Industrial Estate, CAERNARFON, Gwynedd, LL55 2BD	Type of Site: Waste Transfer Depot (Conversion) Planning application reference: C00A/0428/14/LL Description: Conversion to waste transfer depot. An application for detailed planning permission (Ref:C00A/0428/14/LL) was submitted to Caernarfon & Merionydd C.C. on Friday, 11th August 2000. Data source: Historic Planning Application Data Type: Point	-

ID	Location	Address	Further Details	Date
В	18m N	Site Address: Cibyn Industrial Estate, CAERNARFON, Gwynedd, LL55 2BD	Type of Site: Waste Transfer Building Planning application reference: C06A/0360/14/LL Description: Scheme comprises extension of recycling site with construction of new waste transfer building. An application (ref: C06A/0360/14/LL) for detailed planning permission was refused by Gwynedd Arfon D.C. Planning decision obtained Data source: Historic Planning Application Data Type: Point	-
В	18m N	Site Address: Waste Recycling Centre, Cibyn Industrial Estate, CAERNARFON, Gwynedd, LL55 2BD	Type of Site: Waste Transfer Building Planning application reference: C07A/0054/14/LL Description: Scheme comprises extension of recycling site with construction of new waste transfer building, parking facilities, and construction of 5 metre perimeter screen. Construction - black top surfacing site works. An application (ref: C07A/0054/14/LL) for de iled planning permission was granted by Gwynedd Arfon D.C. Planning decision obtained Data source: Historic Planning Application Data Type: Point	-
С	71m E	Site Address: Cibyn Industrial Estate, CAERNARFON, Gwynedd, LL55 2BF	Type of Site: Waste Transfer Station/Workshop Planning application reference: C05A/0663/14/R3 Description: Scheme comprises proposed conversion of part of the council depot to a waste transfer station, new workshop, access and office. An application (ref: C05A/0663/14/R3) for Detailed Planning permission was granted by Gwynedd Arfon D.C. Detailed plans grant ed. Data source: Historic Planning Application Data Type: Point	-

ID	Location	Address	Further Details	Date
D	199m NW	Site Address: Stad Ddiwydiannol Cibyn Indust, A15,Cibyn Industrial Estate, CAERNARFON, Gwynedd, LL55 2BD	Type of Site: Waste Transfer Station Planning application reference: C11/0980/14/R3 Description: Scheme comprises part retrospective application from a use previously granted for the storage of recycling materials to a mixed waste transfer station with external alterations to the building and site boundary. Construction - external refurbishment. A application (ref: C11/0980/14/R3) for detailed planning permission was submitted to Gwynedd Dwyfor D.C. A detailed planning application has been submitted. Data source: Historic Planning Application Data Type: Point	31/05/201 2
D	199m NW	Site Address: Cibyn Industrial Estate, CAERNARFON, Gwynedd, LL55 2B	Type of Site: Waste Transfer Station Planning application reference: C96A/0272/14/CL Description: Change of use of land with the erection of a workshop and office totalling 189 sqm with 2 roller shutter doors. Construction - 2 roller shutter doors. An application (ref: C96A/0272/14/CL) for Detailed Planning permission was submitted to Caernarfon & Merionydd C.C. on 22nd August 1996. Data source: Historic Planning Application Data Type: Point	-

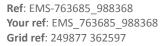
This data is sourced from Ordnance Survey/Groundsure and Local Authority records.

3.6 Licensed waste sites

Records within 500m	43
---------------------	----

Active or recently closed waste sites under Environment Agency/Natural Resources Wales regulation. Features are displayed on the Waste and landfill map on **page 23**

ID	Location	Details		
A	2m SW	Site Name: Gwynedd Skip And Plant Hire Ltd Site Address: Lon Hen Felin, Cibyn Ind Est, Caernarfon, Gwynedd, LL55 2BD Correspondence Address: -	Type of Site: 75kte HCI Waste TS + treatment + asbestos Size: Unknown Environmental Permitting Regulations (Waste) Licence Number: GWY035 EPR reference: CB3237AP/T001 Operator: Gwynedd Skip And Plant Hire Ltd Waste Management licence No: 37229 Annual Tonnage: 0	Issue Date: 24/01/2002 Effective Date: 27/09/2011 Modified: 15/09/2011 Surrendered Date: 0 Expiry Date: 0 Cancelled Date: 0 Status: Transferred
A	4m SW	Site Name: Gwynedd Skip Hire Limited Site Address: Gwynedd Skip Hire Limited, Lon Hen Felin, Cibyn Industrial Estat, Caernarfon, Gwynedd, LL55 2BD Correspondence Address: Gwynedd Skip Hire Limited, Lon Hen Felin, Cibyn Industrial Estate, Caernarfon, Gwynedd, LL55 2BD	Type of Site: Household, Commercial & Industrial Waste T Stn Size: 25000 tonnes Environmental Permitting Regulations (Waste) Licence Number: GWY005 EPR reference: - Operator: Gwynedd Skip Hire Limited Waste Management licence No: 37229 Annual Tonnage: 0	Issue Date: 24/01/2002 Effective Date: - Modified: - Surrendered Date: - Expiry Date: - Cancelled Date: - Status: Issued
A	4m SW	Site Name: Gwynedd Skip And Plant Hire Ltd Site Address: Lon Hen Felin, Cibyn Ind Est, Caernarfon, Gwynedd, LL55 2BD Correspondence Address: -	Type of Site: 75kte HCI Waste TS + treatment + asbestos Size: >= 25000 tonnes 75000 tonnes Environmental Permitting Regulations (Waste) Licence Number: GWY035 EPR reference: EA/EPR/CB3237AP/T001 Operator: Gwynedd Skip And Plant Hire Ltd Waste Management licence No: 37229 Annual Tonnage: 74999	Issue Date: 24/01/2002 Effective Date: 27/09/2011 Modified: 15/09/2011 Surrendered Date: - Expiry Date: - Cancelled Date: - Status: Transferred



ID	Location	Details		
A	4m SW	Site Name: Gwynedd Skip Hire Limited Site Address: Gwynedd Skip Hire Limited, Lon Hen Felin, Cibyn Industrial Estat, Caernarfon, Gwynedd, LL55 2BD Correspondence Address: Gwynedd Skip Hire Limited, Lon Hen Felin, Cibyn Industrial Estate, Caernarfon, Gwynedd, LL55 2BD	Type of Site: Household, Commercial & Industrial Waste T Stn Size: 25000 tonnes Environmental Permitting Regulations (Waste) Licence Number: GWY005 EPR reference: - Operator: Gwynedd Skip Hire Limited Waste Management licence No: 37229 Annual Tonnage: 367905	Issue Date: 24/01/2002 Effective Date: - Modified: 10/03/2006 Surrendered Date: - Expiry Date: - Cancelled Date: - Status: Modified
А	4m SW	Site Name: - Site Address: Gwynedd Skip And Plant Hire Ltd, Lon Hen Felin, Cibyn Ind Est, Caernarfon, Gwynedd, LL55 2BD Correspondence Address: -	Type of Site: - Size: Unknown Environmental Permitting Regulations (Waste) Licence Number: CB3237AP EPR reference: - Operator: Gwynedd Skip And Plant Hire Ltd Waste Management licence No: 0 Annual Tonnage: 74999	Issue Date: 24/01/2002 Effective Date: 24/01/2002 Modified: - Surrendered Date: - Expiry Date: - Cancelled Date: - Status: Effective
A	4m SW	Site Name: Gwynedd Skip Hire Ltd Site Address: Lon Hen Felin, Cibyn Ind Est, Caernarfon, Gwynedd, LL55 2BD Correspondence Address: Lon Hen Felin, Cibyn Ind Est, Caernarfon, Gwynedd, LL65 2BD	Type of Site: Household, Commercial & Industrial Waste T Stn Size: 25000 tonnes Environmental Permitting Regulations (Waste) Licence Number: GWY005 EPR reference: - Operator: Gwynedd Skip Hire Ltd Waste Management licence No: 37229 Annual Tonnage: 0	Issue Date: 1/24/2002 Effective Date: - Modified: 9/4/2008 Surrendered Date: - Expiry Date: - Cancelled Date: - Status: Modified
А	4m SW	Site Name: Gwynedd Skip Hire Ltd Site Address: Lon Hen Felin, Cibyn Ind Est, Caernarfon, Gwynedd, LL55 2BD Correspondence Address: Lon Hen Felin, Cibyn Ind Est, Caernarfon, Gwynedd, LL65 2BD	Type of Site: Household, Commercial & Industrial Waste T Stn Size: >= 25000 tonnes 75000 tonnes Environmental Permitting Regulations (Waste) Licence Number: GWY005 EPR reference: EA/EPR/BP3196LV/V007 Operator: Gwynedd Skip Hire Ltd Waste Management licence No: 37229 Annual Tonnage: 0	Issue Date: 1/24/2002 Effective Date: - Modified: 9/4/2008 Surrendered Date: - Expiry Date: - Cancelled Date: - Status: Modified

ID	Location	Details		
А	4m SW	Site Name: Gwynedd Skip Hire Ltd Site Address: Lon Hen Felin, Cibyn Ind Est, Caernarfon, Gwynedd, LL55 2BD Correspondence Address: -	Type of Site: 75kte HCI Waste TS + treatment + asbestos Size: >= 25000 tonnes 75000 tonnes Environmental Permitting Regulations (Waste) Licence Number: GWY005 EPR reference: EA/EPR/BP3196LV/V008 Operator: Gwynedd Skip Hire Ltd Waste Management licence No: 37229 Annual Tonnage: 74999	Issue Date: 24/01/2002 Effective Date: - Modified: 15/09/2011 Surrendered Date: - Expiry Date: - Cancelled Date: - Status: Modified
А	4m SW	Site Name: - Site Address: Gwynedd Skip And Plant Hire Ltd, Lon Hen Felin, Cibyn Ind Est, Caernarfon, Gwynedd, LL55 2BD Correspondence Address: -	Type of Site: Special Waste Transfer Station Size: Unknown Environmental Permitting Regulations (Waste) Licence Number: CB3237AP EPR reference: - Operator: - Waste Management licence No: 37229 Annual Tonnage: 75000	Issue Date: 30/06/2017 Effective Date: 30/06/2017 Modified: - Surrendered Date: - Expiry Date: - Cancelled Date: - Status: Effective
A	4m SW	Site Name: - Site Address: Gwynedd Skip And Plant Hire Ltd, Lon Hen Felin, Cibyn Ind Est, Caernarfon, Gwynedd, LL55 2BD Correspondence Address: -	Type of Site: Special Waste Transfer Station Size: - Environmental Permitting Regulations (Waste) Licence Number: CB3237AP EPR reference: - Operator: Gwynedd Skip And Plant Hire Ltd Waste Management licence No: 37229 Annual Tonnage: 75000	Issue Date: 30/06/2017 Effective Date: 30/06/2017 Modified: - Surrendered Date: - Expiry Date: - Cancelled Date: - Status: Effective
A	4m SW	Site Name: - Site Address: Gwynedd Skip And Plant Hire Ltd, Lon Hen Felin, Cibyn Ind Est, Caernarfon, Gwynedd, LL55 2BD Correspondence Address: -	Type of Site: Special Waste Transfer Station Size: - Environmental Permitting Regulations (Waste) Licence Number: CB3237AP EPR reference: - Operator: Gwynedd Skip And Plant Hire Ltd Waste Management licence No: 37229 Annual Tonnage: 75000	Issue Date: 30/06/2017 Effective Date: 30/06/2017 Modified: - Surrendered Date: - Expiry Date: - Cancelled Date: - Status: Effective

ID	Location	Details		
A	4m SW	Site Name: - Site Address: Gwynedd Skip And Plant Hire Ltd, Lon Hen Felin, Cibyn Ind Est, Gwynedd, Caernarfon, Gwynedd, LL55 2BD Correspondence Address: -	Type of Site: - Size: Unknown Environmental Permitting Regulations (Waste) Licence Number: CB3237AP EPR reference: - Operator: Gwynedd Skip And Plant Hire Ltd Waste Management licence No: 37229 Annual Tonnage: 75000	Issue Date: 30/06/2017 Effective Date: 30/06/2017 Modified: - Surrendered Date: - Expiry Date: - Cancelled Date: - Status: Effective
A	4m SW	Site Name: - Site Address: Gwynedd Skip And Plant Hire Ltd, Lon Hen Felin, Cibyn Ind Est, Caernarfon, Gwynedd, LL55 2BD Correspondence Address: -	Type of Site: Household, Commercial & Industrial Waste T Stn Size: - Environmental Permitting Regulations (Waste) Licence Number: CB3237AP EPR reference: - Operator: Gwynedd Skip and Plant Hire Ltd Waste Management licence No: 37229 Annual Tonnage: -	Issue Date: 30/06/2017 Effective Date: 30/06/2017 Modified: - Surrendered Date: - Expiry Date: - Cancelled Date: - Status: Effective
2	56m NW	Site Name: Cibyn Waste Transfer Station Site Address: Cibyn Waste Transfer Station, Cibyn Industrial Estate, Caernarfon, Gwynedd, LL55 2BD Correspondence Address: -	Type of Site: Special Waste Transfer Station Size: 25000 tonnes Environmental Permitting Regulations (Waste) Licence Number: GWY016 EPR reference: EA/EPR/QP3994FZ/V002 Operator: Gwynedd Council Waste Management licence No: 37292 Annual Tonnage: 24999	Issue Date: 05/06/2006 Effective Date: - Modified: 22/08/2011 Surrendered Date: - Expiry Date: - Cancelled Date: - Status: Modified
С	95m NE	Site Name: - Site Address: Caerglychu Waste Management Facility, Cibyn Industrial Estate, Caernarfon, Gwynedd, LL55 2BD Correspondence Address: -	Type of Site: - Size: Unknown Environmental Permitting Regulations (Waste) Licence Number: QP3994FZ EPR reference: - Operator: Gwynedd Council Waste Management licence No: 0 Annual Tonnage: 40000	Issue Date: 05/06/2006 Effective Date: 05/06/2006 Modified: - Surrendered Date: - Expiry Date: - Cancelled Date: - Status: Effective

ID	Location	Details		
С	95m NE	Site Name: - Site Address: Caergylchu Waste Management Facility, Cibyn Industrial Estate, Caernarfon, Gwynedd, LL55 2BD Correspondence Address: -	Type of Site: Household, Commercial & Industrial Waste T Stn Size: Unknown Environmental Permitting Regulations (Waste) Licence Number: QP3994FZ EPR reference: - Operator: - Waste Management licence No: 37292 Annual Tonnage: 40000	Issue Date: 03/03/2017 Effective Date: 03/03/2017 Modified: - Surrendered Date: - Expiry Date: - Cancelled Date: - Status: Effective
С	95m NE	Site Name: - Site Address: Caergylchu Waste Management Facility, Cibyn Industrial Estate, Caernarfon, Gwynedd, LL55 2BD Correspondence Address: -	Type of Site: - Size: Unknown Environmental Permitting Regulations (Waste) Licence Number: QP3994FZ EPR reference: - Operator: - Waste Management licence No: 37292 Annual Tonnage: 40000	Issue Date: 03/03/2017 Effective Date: 03/03/2017 Modified: - Surrendered Date: - Expiry Date: - Cancelled Date: - Status: Effective
С	95m NE	Site Name: - Site Address: Caergylchu Waste Management Facility, Cibyn Industrial Estate, Caernarfon, Gwynedd, LL55 2BD Correspondence Address: -	Type of Site: Material Recycling Treatment Facility Size: Unknown Environmental Permitting Regulations (Waste) Licence Number: QP3994FZ EPR reference: - Operator: - Waste Management licence No: 37292 Annual Tonnage: 40000	Issue Date: 03/03/2017 Effective Date: 03/03/2017 Modified: - Surrendered Date: - Expiry Date: - Cancelled Date: - Status: Effective
С	95m NE	Site Name: - Site Address: Caergylchu Waste Management Facility, Cibyn Industrial Estate, Caernarfon, Gwynedd, LL55 2BD Correspondence Address: -	Type of Site: Household, Commercial & Industrial Waste T Stn Size: - Environmental Permitting Regulations (Waste) Licence Number: QP3994FZ EPR reference: - Operator: Gwynedd Council Waste Management licence No: 37292 Annual Tonnage: -	Issue Date: 03/03/2017 Effective Date: 03/03/2017 Modified: - Surrendered Date: - Expiry Date: - Cancelled Date: - Status: Effective

ID	Location	Details		
С	95m NE	Site Name: - Site Address: Caergylchu Waste Management Facility, Cibyn Industrial Estate, Caernarfon, Gwynedd, LL55 2BD Correspondence Address: -	Type of Site: - Size: - Environmental Permitting Regulations (Waste) Licence Number: QP3994FZ EPR reference: - Operator: Gwynedd Council Waste Management licence No: 37292 Annual Tonnage: -	Issue Date: 03/03/2017 Effective Date: 03/03/2017 Modified: - Surrendered Date: - Expiry Date: - Cancelled Date: - Status: Effective
С	95m NE	Site Name: - Site Address: Caergylchu Waste Management Facility, Cibyn Industrial Estate, Caernarfon, Gwynedd, LL55 2BD Correspondence Address: -	Type of Site: Material Recycling Treatment Facility Size: - Environmental Permitting Regulations (Waste) Licence Number: QP3994FZ EPR reference: - Operator: Gwynedd Council Waste Management licence No: 37292 Annual Tonnage: -	Issue Date: 03/03/2017 Effective Date: 03/03/2017 Modified: - Surrendered Date: - Expiry Date: - Cancelled Date: - Status: Effective
С	95m NE	Site Name: - Site Address: Caergylchu Waste Management Facility, Cibyn Industrial Estate, Caernarfon, Gwynedd, LL55 2BD Correspondence Address: -	Type of Site: Household, Commercial & Industrial Waste T Stn Size: - Environmental Permitting Regulations (Waste) Licence Number: QP3994FZ EPR reference: - Operator: Gwynedd Council Waste Management licence No: 37292 Annual Tonnage: 40000	Issue Date: 03/03/2017 Effective Date: 03/03/2017 Modified: - Surrendered Date: - Expiry Date: - Cancelled Date: - Status: Effective
С	95m NE	Site Name: - Site Address: Caergylchu Waste Management Facility, Cibyn Industrial Estate, Caernarfon, Gwynedd, LL55 2BD Correspondence Address: -	Type of Site: - Size: - Environmental Permitting Regulations (Waste) Licence Number: QP3994FZ EPR reference: - Operator: Gwynedd Council Waste Management licence No: 37292 Annual Tonnage: 40000	Issue Date: 03/03/2017 Effective Date: 03/03/2017 Modified: - Surrendered Date: - Expiry Date: - Cancelled Date: - Status: Effective

ID	Location	Details		
С	95m NE	Site Name: - Site Address: Caergylchu Waste Management Facility, Cibyn Industrial Estate, Caernarfon, Gwynedd, LL55 2BD Correspondence Address: -	Type of Site: Material Recycling Treatment Facility Size: - Environmental Permitting Regulations (Waste) Licence Number: QP3994FZ EPR reference: - Operator: Gwynedd Council Waste Management licence No: 37292 Annual Tonnage: 40000	Issue Date: 03/03/2017 Effective Date: 03/03/2017 Modified: - Surrendered Date: - Expiry Date: - Cancelled Date: - Status: Effective
С	95m NE	Site Name: - Site Address: Caergylchu Waste Management Facility, Cibyn Industrial Estate, Gwynedd, Caernarfon, Gwynedd, LL55 2BD Correspondence Address: -	Type of Site: - Size: Unknown Environmental Permitting Regulations (Waste) Licence Number: QP3994FZ EPR reference: - Operator: Gwynedd Council Waste Management licence No: 37292 Annual Tonnage: 40000	Issue Date: 03/03/2017 Effective Date: 03/03/2017 Modified: - Surrendered Date: - Expiry Date: - Cancelled Date: - Status: Effective
С	95m NE	Site Name: - Site Address: Caergylchu Waste Management Facility, Cibyn Industrial Estate, Gwynedd, Caernarfon, Gwynedd, LL55 2BD Correspondence Address: -	Type of Site: - Size: Unknown Environmental Permitting Regulations (Waste) Licence Number: QP3994FZ EPR reference: - Operator: Gwynedd Council Waste Management licence No: 37292 Annual Tonnage: 40000	Issue Date: 03/03/2017 Effective Date: 03/03/2017 Modified: - Surrendered Date: - Expiry Date: - Cancelled Date: - Status: Effective
С	95m NE	Site Name: - Site Address: Caergylchu Waste Management Facility, Cibyn Industrial Estate, Gwynedd, Caernarfon, Gwynedd, LL55 2BD Correspondence Address: -	Type of Site: - Size: Unknown Environmental Permitting Regulations (Waste) Licence Number: QP3994FZ EPR reference: - Operator: Gwynedd Council Waste Management licence No: 37292 Annual Tonnage: 40000	Issue Date: 03/03/2017 Effective Date: 03/03/2017 Modified: - Surrendered Date: - Expiry Date: - Cancelled Date: - Status: Effective

ID	Location	Details		
С	97m NE	Site Name: Caerglychu Waste Management Facility Site Address: Cibyn Industrial Estate, Caernarfon, Gwynedd, LL55 2BD Correspondence Address: -	Type of Site: Household, Commercial & Industrial Waste T Stn Size: 25000 tonnes Environmental Permitting Regulations (Waste) Licence Number: GWY016 EPR reference: QP3994FZ/V004 Operator: Gwynedd Council Waste Management licence No: 37292 Annual Tonnage: 24999	Issue Date: 05/06/2006 Effective Date: - Modified: 06/05/2014 Surrendered Date: 0 Expiry Date: 0 Cancelled Date: 0 Status: Modified
F	229m SW	Site Name: - Site Address: Unit A6, Zone 3, Cibyn Ind Est, Caernarfon, Gwynedd, LL55 2BD Correspondence Address: -	Type of Site: - Size: Unknown Environmental Permitting Regulations (Waste) Licence Number: AB3097ZB EPR reference: - Operator: C & A Asbestos Removal Ltd Waste Management licence No: 0 Annual Tonnage: 0	Issue Date: 03/03/2016 Effective Date: 03/03/2016 Modified: - Surrendered Date: - Expiry Date: - Cancelled Date: - Status: Effective
F	229m SW	Site Name: - Site Address: Unit A6, Zone 3, Cibyn Ind Est, Caernarfon, LL55 2BD Correspondence Address: -	Type of Site: Asbestos Waste Transfer Station Size: Unknown Environmental Permitting Regulations (Waste) Licence Number: AB3097ZB EPR reference: - Operator: - Waste Management licence No: 0 Annual Tonnage: 0	Issue Date: 03/03/2016 Effective Date: 03/03/2016 Modified: - Surrendered Date: - Expiry Date: - Cancelled Date: - Status: Effective
F	229m SW	Site Name: - Site Address: Unit A6, Zone 3, Cibyn Ind Est, Caernarfon, Gwynedd, LL55 2BD Correspondence Address: -	Type of Site: - Size: Unknown Environmental Permitting Regulations (Waste) Licence Number: AB3097ZB EPR reference: - Operator: C & A Asbestos Removal Ltd Waste Management licence No: 0 Annual Tonnage: 0	Issue Date: 03/03/2016 Effective Date: 03/03/2016 Modified: - Surrendered Date: - Expiry Date: - Cancelled Date: - Status: Effective

ID	Location	Details		
F	229m SW	Site Name: - Site Address: Unit A6, Zone 3, Cibyn Ind Est, Caernarfon, LL55 2BD Correspondence Address: -	Type of Site: Asbestos Waste Transfer Station Size: - Environmental Permitting Regulations (Waste) Licence Number: AB3097ZB EPR reference: - Operator: C & A Asbestos Removal Ltd Waste Management licence No: 0 Annual Tonnage: -	Issue Date: 03/03/2016 Effective Date: 03/03/2016 Modified: - Surrendered Date: - Expiry Date: - Cancelled Date: - Status: Effective
F	229m SW	Site Name: - Site Address: Unit A6, Zone 3, Cibyn Ind Est, Caernarfon, LL55 2BD Correspondence Address: -	Type of Site: Asbestos Waste Transfer Station Size: - Environmental Permitting Regulations (Waste) Licence Number: AB3097ZB EPR reference: - Operator: C & A Asbestos Removal Ltd Waste Management licence No: 0 Annual Tonnage: -	Issue Date: 03/03/2016 Effective Date: 03/03/2016 Modified: - Surrendered Date: - Expiry Date: - Cancelled Date: - Status: Effective
Η	282m NE	Site Name: Pontrug - Part Ordnance Survey 3990 Site Address: Nantlle, Gwynedd, LL55 2BF Correspondence Address: Unit 21, Llanegai Ind Est, Bangor, Gwynedd, LL57 4YH	Type of Site: Landfill taking Non- Biodegradeable Wastes Size: >= 25000 tonnes 75000 tonnes Environmental Permitting Regulations (Waste) Licence Number: WAT002 EPR reference: - Operator: Watkin Jones & Sons Waste Management licence No: 37061 Annual Tonnage: 0	Issue Date: 25/02/1993 Effective Date: - Modified: - Surrendered Date: - Expiry Date: - Cancelled Date: - Status: Closure
Η	282m NE	Site Name: Pontrug - Part Ordnance Survey 3990 Site Address: Nantlle, Caernarfon, Gwynedd, LL55 2BF Correspondence Address: J Mendoza, Unit 21, Llandegai Industrial Estate, Bangor, Gwynedd, LL57 4YH	Type of Site: Landfill taking Non- Biodegradeable Wastes Size: >= 25000 tonnes 75000 tonnes Environmental Permitting Regulations (Waste) Licence Number: WAT002 EPR reference: - Operator: Watkin Jones & Son Limited Waste Management licence No: 37061 Annual Tonnage: 0	Issue Date: 25/02/1993 Effective Date: - Modified: - Surrendered Date: - Expiry Date: - Cancelled Date: - Status: Closure

ID	Location	Details		
Η	285m NE	Site Name: Pontrug - Part Ordnance Survey 3990 Site Address: Nantlle, Caernarfon, Gwynedd, LL55 2BF Correspondence Address: Unit 21, Llandegai Industrial Estate, Bangor, Gwynedd, LL57 4YH	Type of Site: Landfill taking Non- Biodegradeable Wastes Size: 25000 tonnes Environmental Permitting Regulations (Waste) Licence Number: WAT002 EPR reference: - Operator: Watkin Jones & Son Limited Waste Management licence No: 37061 Annual Tonnage: 0	Issue Date: 25/02/1993 Effective Date: - Modified: - Surrendered Date: - Expiry Date: - Cancelled Date: - Status: Closure
Η	285m NE	Site Name: Pontrug Landfill - Part Ordnance Survey 3990 Site Address: Pontrug, Nantlle, Caernarfon, Gwynedd, LL55 2BF Correspondence Address: -	Type of Site: Landfill taking Non- Biodegradeable Wastes Size: 25000 tonnes Environmental Permitting Regulations (Waste) Licence Number: WAT002 EPR reference: EA/EPR/XP3094FS/A001 Operator: Watkin Jones & Son Ltd Waste Management licence No: 37061 Annual Tonnage: 150000	Issue Date: 25/02/1993 Effective Date: - Modified: - Surrendered Date: - Expiry Date: - Cancelled Date: - Status: Closure
Н	285m NE	Site Name: - Site Address: Pontrug Landfill - Part Ordnance Survey 3990, Nantlle, Caernarfon, Gwynedd, LL55 2BF Correspondence Address: -	Type of Site: Landfill taking Non- Biodegradeable Wastes Size: Unknown Environmental Permitting Regulations (Waste) Licence Number: XP3094FS EPR reference: - Operator: - Waste Management licence No: 37061 Annual Tonnage: 0	Issue Date: 25/02/1993 Effective Date: 25/02/1993 Modified: - Surrendered Date: - Expiry Date: 25/01/2002 Cancelled Date: - Status: Effective
Η	285m NE	Site Name: - Site Address: Pontrug Landfill - Part Ordnance Survey 3990, Nantlle, Caernarfon, Gwynedd, LL55 2BF Correspondence Address: -	Type of Site: - Size: Unknown Environmental Permitting Regulations (Waste) Licence Number: XP3094FS EPR reference: - Operator: Watkin Jones & Son Ltd Waste Management licence No: 0 Annual Tonnage: 0	Issue Date: 25/02/1993 Effective Date: 25/02/1993 Modified: - Surrendered Date: - Expiry Date: - Cancelled Date: - Status: Effective

ID	Location	Details		
Η	285m NE	Site Name: - Site Address: Pontrug Landfill - Part Ordnance Survey 3990, Nantlle, Caernarfon, Gwynedd, LL55 2BF Correspondence Address: -	Type of Site: Landfill taking Non- Biodegradeable Wastes Size: - Environmental Permitting Regulations (Waste) Licence Number: XP3094FS EPR reference: - Operator: Watkin Jones & Son Ltd Waste Management licence No: 37061 Annual Tonnage: 0	Issue Date: 25/02/1993 Effective Date: 25/02/1993 Modified: - Surrendered Date: - Expiry Date: 25/01/2002 Cancelled Date: - Status: Effective
Н	285m NE	Site Name: - Site Address: Pontrug Landfill - Part Ordnance Survey 3990, Nantlle, Gwynedd, Caernarfon, Gwynedd, LL55 2BF Correspondence Address: -	Type of Site: - Size: Unknown Environmental Permitting Regulations (Waste) Licence Number: XP3094FS EPR reference: - Operator: Watkin Jones & Son Ltd Waste Management licence No: 37061 Annual Tonnage: 0	Issue Date: 25/02/1993 Effective Date: 25/02/1993 Modified: - Surrendered Date: - Expiry Date: 25/01/2002 Cancelled Date: - Status: Effective
Н	285m NE	Site Name: - Site Address: Pontrug Landfill - Part Ordnance Survey 3990, Nantlle, Caernarfon, Gwynedd, LL55 2BF Correspondence Address: -	Type of Site: Landfill taking Non- Biodegradeable Wastes Size: - Environmental Permitting Regulations (Waste) Licence Number: XP3094FS EPR reference: - Operator: Watkin Jones & Son Ltd Waste Management licence No: 37061 Annual Tonnage: -	Issue Date: 25/02/1993 Effective Date: 25/02/1993 Modified: - Surrendered Date: - Expiry Date: 25/01/2002 Cancelled Date: - Status: Effective
Н	287m NE	Site Name: Pontrug Landfill - Part Ordnance Survey 3990 Site Address: Pontrug, Nantlle, Caernarfon, Gwynedd, LL55 2BF Correspondence Address: -	Type of Site: Landfill taking Non- Biodegradeable Wastes Size: >= 75000 tonnes Environmental Permitting Regulations (Waste) Licence Number: WAT002 EPR reference: XP3094FS/A001 Operator: Watkin Jones & Son Ltd Waste Management licence No: 37061 Annual Tonnage: 150000	Issue Date: 25/02/1993 Effective Date: - Modified: - Surrendered Date: 0 Expiry Date: 0 Cancelled Date: 0 Status: Closure

This data is sourced from the Environment Agency and Natural Resources Wales.

3.7 Waste exemptions

Records within 500m

Activities involving the storage, treatment, use or disposal of waste that are exempt from needing a permit. Exemptions have specific limits and conditions that must be adhered to.

Features are displayed on the Waste and landfill map on page 23

ID	Location	Site	Reference	Category	Sub-Category	Description
A	On site	Gwynedd Skip & Plant Hire Ltd, Gwynedd Skip & Plant Hire Ltd, Lon Hen Felin, Cibyn Industrial Estate, Caernarfon, Gwynedd, LL55 2BD	NRW- WME048626	Treating waste exemption	Not on a farm	Preparatory treatments (baling, sorting, shredding etc)
A	On site	Gwynedd Skip & Plant Hire Ltd, Gwynedd Skip & Plant Hire Ltd, Lon Hen Felin, Cibyn Industrial Estate, Caernarfon, Gwynedd, LL55 2BD	NRW- WME048626	Using waste exemption	Not on a farm	Use of waste in construction
Α	On site	Gwynedd Skip & Plant Hire Ltd, Gwynedd Skip & Plant Hire Ltd, Lon Hen Felin, Cibyn Industrial Estate, Caernarfon, Gwynedd, LL55 2BD	NRW- WME048626	Treating waste exemption	Not on a farm	Screening and blending of waste
Α	On site	Gwynedd Skip & Plant Hire Ltd, Gwynedd Skip & Plant Hire Ltd, Lon Hen Felin, Cibyn Industrial Estate, Caernarfon, Gwynedd, LL55 2BD	NRW- WME048626	Treating waste exemption	Not on a farm	Recovery of scrap metal
Α	On site	Gwynedd Skip & Plant Hire Ltd, Gwynedd Skip & Plant Hire Ltd, Lon Hen Felin, Cibyn Industrial Estate, Caernarfon, Gwynedd, LL55 2BD	NRW- WME048626	Treating waste exemption	Not on a farm	Treatment of waste food
A	On site	Gwynedd Skip & Plant Hire Ltd, Gwynedd Skip & Plant Hire Ltd, Lon Hen Felin, Cibyn Industrial Estate, Caernarfon, Gwynedd, LL55 2BD	NRW- WME048626	Treating waste exemption	Not on a farm	Sorting mixed waste

			-			
ID	Location	Site	Reference	Category	Sub-Category	Description
A	On site	Gwynedd Skip & Plant Hire Ltd, Gwynedd Skip & Plant Hire Ltd, Lon Hen Felin, Cibyn Industrial Estate, Caernarfon, Gwynedd, LL55 2BD	NRW- WME048626	Treating waste exemption	Not on a farm	Mechanical treatment of end-of-life tyres
Α	On site	Gwynedd Skip & Plant Hire Ltd, Gwynedd Skip & Plant Hire Ltd, Lon Hen Felin, Cibyn Industrial Estate, Caernarfon, Gwynedd, LL55 2BD	NRW- WME048626	Treating waste exemption	Not on a farm	Recovery of textiles
Α	On site	Gwynedd Skip & Plant Hire Ltd, Gwynedd Skip & Plant Hire Ltd, Lon Hen Felin, Cibyn Industrial Estate, Caernarfon, Gwynedd, LL55 2BD	NRW- WME048626	Storing waste exemption	Not on a farm	Storage of waste in secure containers
A	On site	Gwynedd Skip & Plant Hire Ltd, Gwynedd Skip & Plant Hire Ltd, Lon Hen Felin, Cibyn Industrial Estate, Caernarfon, Gwynedd, LL55 2BD	NRW- WME048626	Storing waste exemption	Not on a farm	Storage of waste in a secure place
A	On site	Gwynedd Skip & Plant Hire Ltd, Gwynedd Skip & Plant Hire Ltd, Lon Hen Felin, Cibyn Industrial Estate, Caernarfon, Gwynedd, LL55 2BD	NRW- WME048626	Treating waste exemption	Not on a farm	Cleaning, washing, spraying or coating relevant waste
A	On site	Gwynedd Skip & Plant Hire Ltd, Gwynedd Skip & Plant Hire Ltd, Lon Hen Felin, Cibyn Industrial Estate, Caernarfon, Gwynedd, LL55 2BD	NRW- WME048626	Treating waste exemption	Not on a farm	Manual treatment of waste
A	On site	Gwynedd Skip & Plant Hire Ltd, Gwynedd Skip & Plant Hire Ltd, Lon Hen Felin, Cibyn Industrial Estate, Caernarfon, Gwynedd, LL55 2BD	NRW- WME048626	Treating waste exemption	Not on a farm	Treatment of waste wood and waste plant matter by chipping, shredding, cutting or pulverising

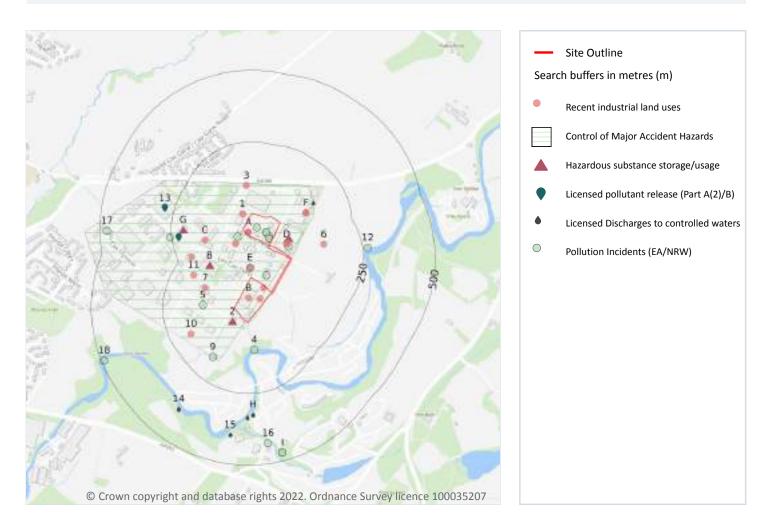
ID	Location	Site	Reference	Category	Sub-Category	Description
В	24m N	Antur Waunfawr, Caergylchu, Cibyn Industrial Estate, Caernarfon, Gwynedd, LL55 2BD	NRW- WME053530	Storing waste exemption	Not on a farm	Storage of waste in a secure place
С	96m E	Cyngor Gwynedd, Gwasanaethau Priffyrdd a Bwrdeistrefol, Cibyn Industrial Estate, Caernarfon, Gwynedd, LL55 2BF	NRW- WME043321	Storing waste exemption	Not on a farm	Storage of waste in a secure place
С	96m E	96m E Cyngor Gwynedd, Gwasanaethau Priffyrdd a Bwrdeistrefol, Cibyn Industrial Estate, Caernarfon, Gwynedd, LL552BF		Treating waste exemption	Not on a farm	Preparatory treatments (baling, sorting, shredding etc)
3	117m NE	Cyngor Gwynedd, Caergylchu, Cibyn Industrial Estate, Caernarfon, Gwynedd, LL55 2BD	NRW- WME059057	Storing waste exemption	Not on a farm	Storage of waste in a secure place
4	123m NW	Antur Waunfawr, Warws Werdd, Parth 4 Stad Ddiwydiannol Cibyn, Caernarfon, Gwynedd, LL55 2BD	NRW- WME053531	Storing waste exemption	Not on a farm	Storage of waste in a secure place
E	209m W	Antur Waunfawr, Wawrs Werdd, Parth 4 Stad Ddiwydiannol Cibyn, Caernarfon, Gwynedd, LL55 2BD	NRW- WME068502	Treating waste exemption	Not on a farm	Manual treatment of waste
E	209m W	Antur Waunfawr, Wawrs Werdd, Parth 4 Stad Ddiwydiannol Cibyn, Caernarfon, Gwynedd, LL55 2BD	NRW- WME068502	Treating waste exemption	Not on a farm	Sorting mixed waste
E	209m W	Antur Waunfawr, Warws Werdd, Parth 4 Stad Cibyn, Caernarfon, Gwynedd, LL55 2BD	NRW- WME044372	Treating waste exemption	Not on a farm	Recovery of textiles

ID	Location	Site	Reference	Category	Sub-Category	Description
E	209m W	Gwynedd Skip & Plant Hire Ltd, Plot C1, Cibyn Industrial Estate, Caernarfon, Gwynedd, II552bd	NRW- WME004908	Storing waste exemption	Waste Exemption - Agricultural and Non- Agricultural	Storage of waste in secure containers
E	209m W	Gwynedd Skip & Plant Hire Ltd, Plot C1, Cibyn Industrial Estate, Caernarfon, Gwynedd, II552bd	NRW- WME004908	Storing waste exemption	Waste Exemption - Agricultural and Non- Agricultural	Storage of waste in a secure place
Ε	209m W	Gwynedd Skip & Plant Hire Ltd, Plot C1, Cibyn Industrial Estate, Caernarfon, Gwynedd, II552bd	NRW- WME004908	Using waste exemption	Waste Exemption - Agricultural and Non- Agricultural	Use of waste in construction
E	209m W	Warws Werdd Parth 4 Stad Ddiwydiannol Cibyn Caernarfon Gwynedd LL552BD	NRW- WME006212	Treating waste exemption	Not on a farm	Sorting mixed waste
E	209m W	Warws Werdd Parth 4 Stad Ddiwydiannol Cibyn Caernarfon Gwynedd LL552BD	NRW- WME006212	Treating waste exemption	Not on a farm	Manual treatment of waste
Ε	209m W	Antur Waunfawr, Caergylchu, Cibyn Industrial Estate, Caernarfon, Gwynedd, LL552bd	NRW- WME007651	Treating waste exemption	Not on a farm	Preparatory treatments (baling, sorting, shredding etc)
E	209m W	W & M & T Parry, Fferm Bodrual, Cibyn, Caernarfon, Gwynedd, II552bd	NRW- WME017496	Disposing of waste exemption	Waste Exemption - Agricultural and Non- Agricultural	Burning waste in the open
E	209m W	W & M & T Parry, Fferm Bodrual, Cibyn, Caernarfon, Gwynedd, II552bd	NRW- WME017496	Using waste exemption	Waste Exemption - Agricultural and Non- Agricultural	Spreading waste on agricultural land to confer benefit
E	E 209m W W & M & T Parry, Fferm Bodrual, Cibyn, Caernarfon, Gwynedd, II552bd		NRW- WME017496	Disposing of waste exemption	Waste Exemption - Agricultural and Non- Agricultural	Deposit of waste from dredging of inland waters

ID	Location	Site	Reference	Category	Sub-Category	Description
E	209m W	W & M & T Parry, Fferm Bodrual, Cibyn, Caernarfon, Gwynedd, II552bd	NRW- WME017496	Using waste exemption	Waste Exemption - Agricultural and Non- Agricultural	Use of waste in construction
Ε	209m W	W & M & T Parry, Fferm Bodrual, Cibyn, Caernarfon, Gwynedd, II552bd	NRW- WME017496	Using waste exemption	Waste Exemption - Agricultural and Non- Agricultural	Use of waste for a specified purpose
Ε	209m W	Cyngor Gwynedd, Caergylchu, Cibyn Industrial Estate, Caernarfon, Gwynedd, LL552BD	NRW- WME020326	Storing waste exemption	Not on a farm	Storage of waste in a secure place
Ε	209m W	Gwynedd Skip & Plant Hire Ltd, Gwynedd Skip & Plant Hire Ltd, Lon Hen Felin, Cibyn Industrial Estate, Caernarfon, Gwynedd, LL552BD	NRW- WME020982	Treating waste exemption	Not on a farm	Recovery of textiles
Ε	209m W	Gwynedd Skip & Plant Hire Ltd, Gwynedd Skip & Plant Hire Ltd, Lon Hen Felin, Cibyn Industrial Estate, Caernarfon, Gwynedd, LL552BD	NRW- WME020982	Treating waste exemption	Not on a farm	Recovery of scrap metal
Ε	209m W	Gwynedd Skip & Plant Hire Ltd, Gwynedd Skip & Plant Hire Ltd, Lon Hen Felin, Cibyn Industrial Estate, Caernarfon, Gwynedd, LL552BD	NRW- WME020982	Treating waste exemption	Not on a farm	Screening and blending of waste
E	209m W	Gwynedd Skip & Plant Hire Ltd, Gwynedd Skip & Plant Hire Ltd, Lon Hen Felin, Cibyn Industrial Estate, Caernarfon, Gwynedd, LL552BD	NRW- WME020982	Treating waste exemption	Not on a farm	Manual treatment of waste
Ε	209m W	Gwynedd Skip & Plant Hire Ltd, Gwynedd Skip & Plant Hire Ltd, Lon Hen Felin, Cibyn Industrial Estate, Caernarfon, Gwynedd, LL552BD	NRW- WME020982	Treating waste exemption	Not on a farm	Sorting mixed waste

ID	Location	Site	Reference	Category	Sub-Category	Description
Ε	209m W	Gwynedd Skip & Plant Hire Ltd, Gwynedd Skip & Plant Hire Ltd, Lon Hen Felin, Cibyn Industrial Estate, Caernarfon, Gwynedd, LL552BD	NRW- WME020982	Storing waste exemption	Not on a farm	Storage of waste in secure containers
Ε	209m W	Gwynedd Skip & Plant Hire Ltd, Gwynedd Skip & Plant Hire Ltd, Lon Hen Felin, Cibyn Industrial Estate, Caernarfon, Gwynedd, LL552BD	NRW- WME020982	Treating waste exemption	Not on a farm	Mechanical treatment of end-of-life tyres
Ε	209m W	Gwynedd Skip & Plant Hire Ltd, Gwynedd Skip & Plant Hire Ltd, Lon Hen Felin, Cibyn Industrial Estate, Caernarfon, Gwynedd, LL552BD	NRW- WME020982	Treating waste exemption	Not on a farm	Treatment of waste food
Ε	209m W	Gwynedd Skip & Plant Hire Ltd, Gwynedd Skip & Plant Hire Ltd, Lon Hen Felin, Cibyn Industrial Estate, Caernarfon, Gwynedd, LL552BD	NRW- WME020982	Treating waste exemption	Not on a farm	Treatment of waste wood and waste plant matter by chipping, shredding, cutting or pulverising
E	209m W	Gwynedd Skip & Plant Hire Ltd, Gwynedd Skip & Plant Hire Ltd, Lon Hen Felin, Cibyn Industrial Estate, Caernarfon, Gwynedd, LL552BD	NRW- WME020982	Using waste exemption	Not on a farm	Use of waste in construction
E	209m W	Gwynedd Skip & Plant Hire Ltd, Gwynedd Skip & Plant Hire Ltd, Lon Hen Felin, Cibyn Industrial Estate, Caernarfon, Gwynedd, LL552BD	NRW- WME020982	Storing waste exemption	Not on a farm	Storage of waste in a secure place
Ε	209m W	Gwynedd Skip & Plant Hire Ltd, Gwynedd Skip & Plant Hire Ltd, Lon Hen Felin, Cibyn Industrial Estate, Caernarfon, Gwynedd, LL552BD	NRW- WME020982	Treating waste exemption	Not on a farm	Preparatory treatments (baling, sorting, shredding etc)

ID	Location	Site	Reference	Category	Sub-Category	Description
Ε	209m W	Gwynedd Skip & Plant Hire Ltd, Gwynedd Skip & Plant Hire Ltd, Lon Hen Felin, Cibyn Industrial Estate, Caernarfon, Gwynedd, LL552BD	NRW- WME020982	Treating waste exemption	Not on a farm	Cleaning, washing, spraying or coating relevant waste
E	209m W	Antur Waunfawr, Caergylchu, Cibyn Industrial Estate, Caernarfon, Gwynedd, LL552BD	NRW- WME024883	Storing waste exemption	Not on a farm	Storage of waste in a secure place
E	209m W	Antur Waunfawr, Warws Werdd, Parth 4 Stad Ddiwydiannol Cibyn, Caernarfon, Gwynedd, LL552BD	NRW- WME024904	Storing waste exemption	Not on a farm	Storage of waste in a secure place
Ε	209m W	Gwynedd Skip & Plant Hire Ltd, Gwynedd Skip & Plant Hire Ltd, Lon Cae Darbi, Cibyn Industrial Estate, Caernarfon, Gwynedd, LL552BD	NRW- WME030912	Using waste exemption	Waste Exemption - Agricultural and Non- Agricultural	Use of waste in construction
Ε	209m W	Gwynedd Skip & Plant Hire Ltd, Gwynedd Skip & Plant Hire Ltd, Lon Cae Darbi, Cibyn Industrial Estate, Caernarfon, Gwynedd, LL552BD	NRW- WME030912	Storing waste exemption	Not on a farm	Storage of waste in a secure place
E	209m W	Gwynedd Skip & Plant Hire Ltd, Gwynedd Skip & Plant Hire Ltd, Lon Cae Darbi, Cibyn Industrial Estate, Caernarfon, Gwynedd, LL552BD	NRW- WME030912	Storing waste exemption	Not on a farm	Storage of waste in secure containers
E	209m W	Antur Waunfawr, Wawrs Werdd, Parth 4 Stad Ddiwydiannol Cibyn, Caernarfon, Gwynedd, LL552BD	NRW- WME035127	Treating waste exemption	Not on a farm	Sorting mixed waste
E	209m W	Antur Waunfawr, Wawrs Werdd, Parth 4 Stad Ddiwydiannol Cibyn, Caernarfon, Gwynedd, LL552BD	NRW- WME035127	Treating waste exemption	Not on a farm	Manual treatment of waste


ID	Location	Site	Reference	Category	Sub-Category	Description
E	209m W	Welcome Furniture, Welcome Furniture Ltd, Cibyn Industrial Estate, Caernarfon, Gwynedd, LL552BD	NRW- WME035226	Using waste exemption	Not on a farm	Use of waste in construction
Ε	209m W	Dwyfor Oils, Dwyfor Oils Ltd, Lon Cae Darbi, Cibyn Industrial Estate, Caernarfon, Gwynedd, LL552BD	NRW- WME036811	Using waste exemption	Waste Exemption - Agricultural and Non- Agricultural	Use of waste in construction
Ε	209m W	Antur Waunfawr, Caergylchu, Cibyn Industrial Estate, Caernarfon, Gwynedd, LL552bd	NRW- WME037050	Treating waste exemption	Not on a farm	Preparatory treatments (baling, sorting, shredding etc)
Ε	209m W	Gwynedd Skip & Plant Hire Ltd, Gwynedd Skip Hire, Lon Hen Felin, Cibyn Industrial Estate, Caernarfon, Gwynedd, LL552BD	NRW- WME037231	Using waste exemption	Waste Exemption - Agricultural and Non- Agricultural	Use of waste in construction
E	209m W	Gwynedd Skip & Plant Hire Ltd, Gwynedd Skip Hire, Lon Hen Felin, Cibyn Industrial Estate, Caernarfon, Gwynedd, LL552BD	NRW- WME037231	Storing waste exemption	Waste Exemption - Agricultural and Non- Agricultural	Storage of waste in a secure place
Ε	209m W Gwynedd Skip & Plant Hire Ltd, Gwynedd Skip Hire, Lon Hen Felin, Cibyn Industrial Estate, Caernarfon, Gwynedd, LL552BD		NRW- WME037231	Storing waste exemption	Waste Exemption - Agricultural and Non- Agricultural	Storage of waste in secure containers
5	250m W	Welcome Furniture, Redline Indoor Karting, Cibyn Industrial Estate, Caernarfon, Gwynedd, LL55 2BD	NRW- WME053983	Using waste exemption	Waste Exemption - Agricultural and Non- Agricultural	Use of waste in construction
7	377m W	BEESPEED LTD, Unit 1G, Cibyn Industrial Estate, Caernarfon, Gwynedd, LL55 2BD	NRW- WME067303	Storing waste exemption	Not on a farm	Storage of waste in secure containers

4 Current industrial land use

4.1 Recent industrial land uses

Records within 250m

Current potentially contaminative industrial sites.

Features are displayed on the Current industrial land use map on page 47

ID	Location	Company	Address	Activity	Category
Α	On site	Shon Eilian Iron Works	Lon Hen Felin, Cibyn Industrial Estate, Caernarfon, Gwynedd, LL55 2BD	Cutting, Drilling and Welding Services	Construction Services
Α	On site	Gwynedd Skip & Plant Hire Ltd	Lon Hen Felin, Cibyn Industrial Estate, Caernarfon, Gwynedd, LL55 2BD	Recycling, Reclamation and Disposal	Recycling Services

ID	Location	Company	Address	Activity	Category
В	On site	Menai Meats Wales Ltd	Cibyn Industrial Estate, Caernarfon, Gwynedd, LL55 2BD	Fish, Meat and Poultry Products	Foodstuffs
В	On site	Pumping Station	Gwynedd, LL55	Water Pumping Stations	Industrial Features
В	On site	Electricity Sub Station	Gwynedd, LL55	Electrical Features	Infrastructure and Facilities
1	28m NW	I A Q Ltd	Unit A4, Cibyn Industrial Estate, Caernarfon, Gwynedd, LL55 2BD	Precision Engineers	Engineering Services
D	31m NE	Tank	Gwynedd, LL55	Tanks (Generic)	Industrial Features
D	35m NE	Tank	Gwynedd, LL55	Tanks (Generic)	Industrial Features
E	35m N	G & H Car & Commercial Ltd	Cibyn Industrial Estate, Caernarfon, Gwynedd, LL55 2BD	Vehicle Repair, Testing and Servicing	Repair and Servicing
А	50m SW	Coultons Bread Ltd	Cadnant House Lon Hen Felin, Cibyn Industrial Estate, Caernarfon, Gwynedd, LL55 2BD	Baking and Confectionery	Foodstuffs
F	96m E	Gwynedd Civil Engineering	Cibyn Industrial Estate, Caernarfon, Gwynedd, LL55 2BF	Civil Engineers	Engineering Services
F	96m E	Gwynedd Council Vehicle Repairs	Cibyn Industrial Estate, Caernarfon, Gwynedd, LL55 2BF	Vehicle Repair, Testing and Servicing	Repair and Servicing
3	99m N	Electricity Sub Station	Gwynedd, LL55	Electrical Features	Infrastructure and Facilities
6	121m NE	Cibyn Industrial Estate	Gwynedd, LL55	Business Parks and Industrial Estates	Industrial Features
7	124m NW	Antur Waunfawr	Cibyn Industrial Estate, Caernarfon, Gwynedd, LL55 2BD	Recycling, Reclamation and Disposal	Recycling Services
С	138m W	Tank	Gwynedd, LL55	Tanks (Generic)	Industrial Features
10	177m SW	Pump House	Gwynedd, LL55	Water Pumping Stations	Industrial Features
11	180m NW	Mast (Telecommu nication)	Gwynedd, LL55	Telecommunications Features	Infrastructure and Facilities
С	205m SW	Owen's Autospray	Unit A5, Cibyn Industrial Estate, Caernarfon, Gwynedd, LL55 2BD	Vehicle Repair, Testing and Servicing	Repair and Servicing

This data is sourced from Ordnance Survey.

4.2 Current or recent petrol stations Records within 500m 0 Open, closed, under development and obsolete petrol stations. This data is sourced from Experian. 4.3 Electricity cables Records within 500m O High voltage underground electricity transmission cables. This data is sourced from National Grid. 4.4 Gas pipelines

Records within 500m

High pressure underground gas transmission pipelines.

This data is sourced from National Grid.

4.5 Sites determined as Contaminated Land

Records	s within 500m	0
---------	---------------	---

Contaminated Land Register of sites designated under Part 2a of the Environmental Protection Act 1990.

This data is sourced from Local Authority records.

4.6 Control of Major Accident Hazards (COMAH)

Records within 500m	2
Control of Major Accident Hazards (COMAH) sites. This data includes upper and lower tier sites, and	includes a

historical archive of COMAH sites and Notification of Installations Handling Hazardous Substances (NIHHS) records.

Features are displayed on the Current industrial land use map on page 47

ID	Location	Company	Address	Operational status	Tier
С	On site	Amazon Gas Ltd	Amazon Gas Ltd, Cibyn Industrial Estate, Caernarfon, LL55 2BD	Historical NIHHS Site	-

0

4

ID	Location	Company	Address	Operational status	Tier
D	4m NE	Avanti Gas Limited	Avanti Gas Limited, Cibyn Industrial Estate, Unit A5 Cibyn Industrial Estat, Llanberis Road, Caernarfon, Gwynedd, LL55 2BD	Current COMAH Site	COMAH Lower Tier Operator

This data is sourced from the Health and Safety Executive.

4.7 Regulated explosive sites

Records within 500m

Sites registered and licensed by the Health and Safety Executive under the Manufacture and Storage of Explosives Regulations 2005 (MSER). The last update to this data was in April 2011.

This data is sourced from the Health and Safety Executive.

4.8 Hazardous substance storage/usage

Records within 500m

Consents granted for a site to hold certain quantities of hazardous substances at or above defined limits in accordance with the Planning (Hazardous Substances) Regulations 2015.

Features are displayed on the Current industrial land use map on page 47

ID	Location	Details	
2	34m SW	Application reference number: No Details Application status: Approved Application date: No Details Address: Dwyfor Oils Ltd, Zone 4, Cibyn Industrial Estate, Caernarfon, Gwynedd, Wales, LL55 2BD	Details: No Details Enforcement: No Details Date of enforcement: No Details Comment: No Details
D	48m SE	Application reference number: No Details Application status: Approved Application date: No Details Address: Avanti Gas Ltd, Unit A5 Cibyn Industrial Estat, Llanberis Road, Caernarfon, Gwynedd, Wales, LL55 2BF	Details: No Details Enforcement: Data requested, not received. Date of enforcement: Data requested, not received. Comment: Data requested, not received.
8	147m NW	Application reference number: No Details Application status: Approved Application date: No Details Address: Dwyfor Oils Ltd, Land Adjacent to, Zone 4, Cibyn Industrial Estate, Caernarfon, Gwynedd, Wales, LL55 2BD	Details: No Details Enforcement: Data requested, not received. Date of enforcement: Data requested, not received. Comment: Data requested, not received.

0

0

2

ID	Location	Details	
G	208m W	Application reference number: No Details Application status: Approved Application date: No Details Address: Calor Gas Ltd, Site adjacent to Cibyn Industrial Estate, Caernarfon, Gwynedd, Wales, LL55 2HB	Details: No Details Enforcement: Data requested, not received. Date of enforcement: Data requested, not received. Comment: Data requested, not received.

This data is sourced from Local Authority records.

4.9 Historical licensed industrial activities (IPC)

Records within 500m

Integrated Pollution Control (IPC) records of substance releases to air, land and water. This data represents a historical archive as the IPC regime has been superseded.

This data is sourced from the Environment Agency and Natural Resources Wales.

4.10 Licensed industrial activities (Part A(1))

Records within 500m

Records of Part A(1) installations regulated under the Environmental Permitting (England and Wales) Regulations 2016 for the release of substances to the environment.

This data is sourced from the Environment Agency and Natural Resources Wales.

4.11 Licensed pollutant release (Part A(2)/B)

Records within 500m

Records of Part A(2) and Part B installations regulated under the Environmental Permitting (England and Wales) Regulations 2016 for the release of substances to the environment.

Features are displayed on the Current industrial land use map on page 47

ID	Location	Address	Details	
G	227m W	A. & G. Carbody Repairs, Unit 4, Cibyn Industrial Estate, Caernarfon, LL55 2BD	Process: Respraying of Road Vehicles Status: Historical Permit Permit Type: Part B	Enforcement: No Enforcement Notified Date of enforcement: No Enforcement Notified Comment: No Enforcement Notified
13	282m W	Welcome Furniture Ltd, Lon Cae Ffynnon, Ystad Diwydiannol Cibyn, Caernarfon, LL55 2BD	Process: Timber Manufacture Status: Current Permit Permit Type: Part B	Enforcement: No Enforcement Notified Date of enforcement: No Enforcement Notified Comment: No Enforcement Notified

0

5

This data is sourced from Local Authority records.

4.12 Radioactive Substance Authorisations

Records within 500m

Records of the storage, use, accumulation and disposal of radioactive substances regulated under the Radioactive Substances Act 1993.

This data is sourced from the Environment Agency and Natural Resources Wales.

4.13 Licensed Discharges to controlled waters

Records within 500m

Discharges of treated or untreated effluent to controlled waters under the Water Resources Act 1991. Features are displayed on the Current industrial land use map on **page 47**

ID	Location	Address	Details	
F	133m NE	GWYNEDD CIVIL ENGINEERING, CIBYN INDUSTRIAL ESTATE, CAERNARFON, LL55 2BF	Effluent Type: TRADE DISCHARGES - SITE DRAINAGE Permit Number: CG0391601 Permit Version: 1 Receiving Water: UNNAMED TRIB OF AFON SEIONT	Status: Effective Issue date: 02/03/2001 Effective Date: 02/03/2001 Revocation Date: -
Η	324m S	CAEATHRO STW	Effluent Type: SEWAGE DISCHARGES - STW STORM OVERFLOW/STORM TANK - WATER COMPANY Permit Number: CG0060401 Permit Version: 1 Receiving Water: SEIONT	Status: Surrendered Issue date: 31/12/1965 Effective Date: 31/12/1965 Revocation Date: -
Η	333m S	GLAN GWNA HOLIDAY PARK	Effluent Type: SEWAGE DISCHARGES - FINAL/TREATED EFFLUENT - NOT WATER COMPANY Permit Number: CG0075001 Permit Version: 1 Receiving Water: SEIONT	Status: Effective Issue date: 27/06/1968 Effective Date: 27/06/1968 Revocation Date: -
14	384m SW	CAEATHRAW NEW SD.SCHEME (OBSOL	Effluent Type: UNSPECIFIED Permit Number: CG0060301 Permit Version: 1 Receiving Water: SEIONT	Status: CONSENT EXPIRED - TIME LIMIT Issue date: 31/12/1965 Effective Date: 31/12/1965 Revocation Date: 17/02/1986

Contact us with any questions at: info@groundsure.com 08444 159 000

ID	Location	Address	Details	
15	398m S	CAEATHRO STW	Effluent Type: SEWAGE DISCHARGES - FINAL/TREATED EFFLUENT - WATER COMPANY Permit Number: CG0023601 Permit Version: 2 Receiving Water: SEIONT	Status: Surrendered Issue date: 16/12/1988 Effective Date: 16/12/1988 Revocation Date: -

This data is sourced from the Environment Agency and Natural Resources Wales.

4.14 Pollutant release to surface waters (Red List)

Records within 500m	0
Discharges of specified substances under the Environmental Protection (Prescribed Processes and S	Substances)

Regulations 1991. This data is sourced from the Environment Agency and Natural Resources Wales.

4.15 Pollutant release to public sewer

Records within 500m0Discharges of Special Category Effluents to the public sewer.

This data is sourced from the Environment Agency and Natural Resources Wales.

4.16 List 1 Dangerous Substances

Records within 500m	0

Discharges of substances identified on List I of European Directive E 2006/11/EC, and regulated under the Environmental Damage (Prevention and Remediation) Regulations 2015.

This data is sourced from the Environment Agency and Natural Resources Wales.

4.17 List 2 Dangerous Substances

Records within 500m

Discharges of substances identified on List II of European Directive E 2006/11/EC, and regulated under the Environmental Damage (Prevention and Remediation) Regulations 2015.

This data is sourced from the Environment Agency and Natural Resources Wales.

19

4.18 Pollution Incidents (EA/NRW)

Records within 500m

Records of substantiated pollution incidents. Since 2006 this data has only included category 1 (major) and 2 (significant) pollution incidents.

Features are displayed on the Current industrial land use map on page 47

ID	Location	Details	
A	On site	Incident Date: 09/07/2001 Incident Identification: 15149 Pollutant: Atmospheric Pollutants and Effects Pollutant Description: Other Atmospheric Pollutant or Effect	Water Impact: Category 4 (No Impact) Land Impact: Category 4 (No Impact) Air Impact: Category 3 (Minor)
A	On site	Incident Date: 03/04/2007 Incident Identification: 482223 Pollutant: Atmospheric Pollutants and Effects Pollutant Description: Other Atmospheric Pollutant or Effect	Water Impact: Category 4 (No Impact) Land Impact: Category 4 (No Impact) Air Impact: Category 2 (Significant)
A	On site	Incident Date: 12/04/2001 Incident Identification: 2281 Pollutant: Inert Materials and Wastes Pollutant Description: Construction and Demolition Materials and Wastes	Water Impact: Category 4 (No Impact) Land Impact: Category 3 (Minor) Air Impact: Category 4 (No Impact)
A	On site	Incident Date: 12/04/2001 Incident Identification: 2281 Pollutant: Inert Materials and Wastes Pollutant Description: Construction and Demolition Materials and Wastes	Water Impact: Category 4 (No Impact) Land Impact: Category 3 (Minor) Air Impact: Category 4 (No Impact)
A	On site	Incident Date: 24/07/2003 Incident Identification: 176451 Pollutant: Specific Waste Materials Pollutant Description: Vehicles and Vehicle Parts	Water Impact: Category 3 (Minor) Land Impact: Category 3 (Minor) Air Impact: Category 4 (No Impact)
D	27m NE	Incident Date: 18/07/2001 Incident Identification: 17232 Pollutant: Atmospheric Pollutants and Effects Pollutant Description: Fumes	Water Impact: Category 4 (No Impact) Land Impact: Category 4 (No Impact) Air Impact: Category 3 (Minor)
A	29m SW	Incident Date: 18/07/2014 Incident Identification: 1257565 Pollutant: Inert Materials and Wastes Pollutant Description: Soils and Clay	Water Impact: - Land Impact: Category 4 (No Impact) Air Impact: Category 4 (No Impact)
В	34m NE	Incident Date: 26/04/2001 Incident Identification: 3557 Pollutant: Atmospheric Pollutants and Effects Pollutant Description: Smoke	Water Impact: Category 4 (No Impact) Land Impact: Category 4 (No Impact) Air Impact: Category 3 (Minor)

ID	Location	Details	
E	34m N	Incident Date: 12/11/2014 Incident Identification: 1293787 Pollutant: Atmospheric Pollutants and Effects Pollutant Description: Smoke	Water Impact: - Land Impact: Category 4 (No Impact) Air Impact: Category 4 (No Impact)
4	99m S	Incident Date: 11/12/2002 Incident Identification: 125594 Pollutant: Specific Waste Materials Pollutant Description: Other Specific Waste Material	Water Impact: Category 2 (Significant) Land Impact: Category 4 (No Impact) Air Impact: Category 4 (No Impact)
5	110m W	Incident Date: 25/11/2001 Incident Identification: 44814 Pollutant: Oils and Fuel Pollutant Description: Diesel	Water Impact: Category 3 (Minor) Land Impact: Category 4 (No Impact) Air Impact: Category 4 (No Impact)
9	167m SW	Incident Date: 09/01/2016 Incident Identification: 1401518 Pollutant: Atmospheric Pollutants and Effects Pollutant Description: Smoke	Water Impact: - Land Impact: Category 4 (No Impact) Air Impact: Category 4 (No Impact)
G	256m W	Incident Date: 27/06/2002 Incident Identification: 87806 Pollutant: Organic Chemicals/Products Pollutant Description: Other Organic Chemical or Product	Water Impact: Category 4 (No Impact) Land Impact: Category 4 (No Impact) Air Impact: Category 3 (Minor)
12	267m E	Incident Date: 02/04/2003 Incident Identification: 148134 Pollutant: Pollutant Not Identified Pollutant Description: Not Identified	Water Impact: Category 3 (Minor) Land Impact: Category 4 (No Impact) Air Impact: Category 4 (No Impact)
16	428m S	Incident Date: 02/01/2004 Incident Identification: 208727 Pollutant: Contaminated Water Pollutant Description: Suspended Solids	Water Impact: Category 2 (Significant) Land Impact: Category 4 (No Impact) Air Impact: Category 4 (No Impact)
I	472m S	Incident Date: 08/11/2016 Incident Identification: 1606766 Pollutant: Contaminated Water Pollutant Description: Suspended Solids	Water Impact: Category 3 (Minor) Land Impact: Other Air Impact: Other
I	472m S	Incident Date: 08/11/2016 Incident Identification: 1606766 Pollutant: - Pollutant Description: -	Water Impact: Category 3 (Minor) Land Impact: Other Air Impact: Other
17	474m W	Incident Date: 02/08/2013 Incident Identification: 1142791 Pollutant: Specific Waste Materials Pollutant Description: Commercial Waste	Water Impact: - Land Impact: Category 4 (No Impact) Air Impact: Category 3 (Minor)

ID	Location	Details	
18	490m W	Incident Date: 01/10/2002 Incident Identification: 112642 Pollutant: Pollutant Not Identified Pollutant Description: Not Identified	Water Impact: Category 3 (Minor) Land Impact: Category 4 (No Impact) Air Impact: Category 4 (No Impact)

This data is sourced from the Environment Agency and Natural Resources Wales.

4.19 Pollution inventory substances

Records within 500m

The pollution inventory (substances) includes reporting on annual emissions of certain regulated substances to air, controlled waters and land. A reporting threshold for each substance is also included. Where emissions fall below the reporting threshold, no value will be given. The data is given for the most recent complete year available.

This data is sourced from the Environment Agency and the Scottish Environment Protection Agency.

4.20 Pollution inventory waste transfers

Records within 500m

The pollution inventory (waste transfers) includes reporting on annual transfers and recovery/disposal of controlled wastes from a site. A reporting threshold for each waste type is also included. Where releases fall below the reporting threshold, no value will be given. The data is given for the most recent complete year available.

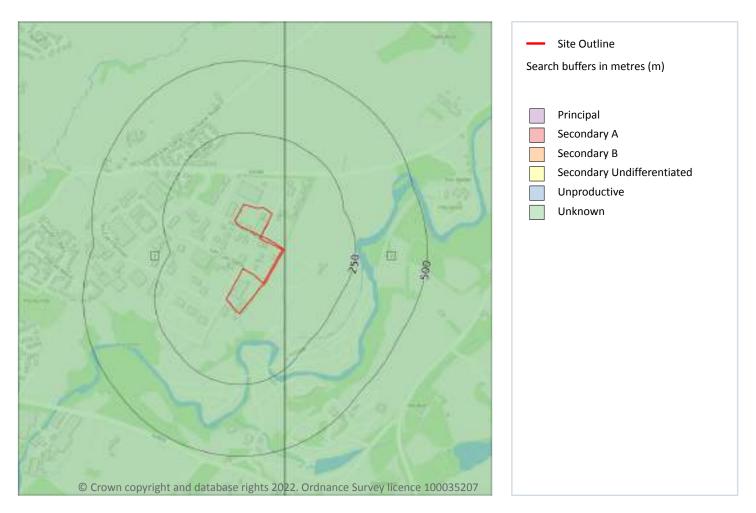
This data is sourced from the Environment Agency and the Scottish Environment Protection Agency.

4.21 Pollution inventory radioactive waste

Records within 500m

The pollution inventory (radioactive wastes) includes reporting on annual releases of radioactive substances from a site, including the means of release. Where releases fall below the reporting threshold, no value will be given. The data is given for the most recent complete year available.

This data is sourced from the Environment Agency and the Scottish Environment Protection Agency.



0

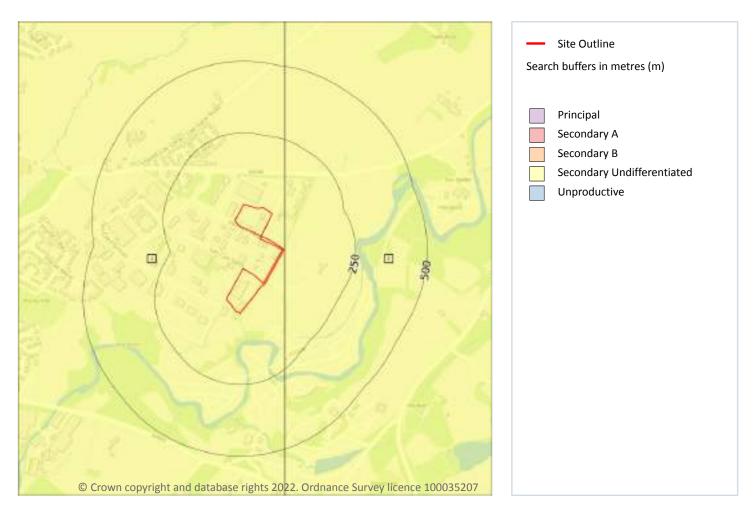
0

5 Hydrogeology - Superficial aquifer

5.1 Superficial aquifer

Records within 500m2Aquifer status of groundwater held within superficial geology.Features are displayed on the Hydrogeology map on page 57

IDLocationDesignationDescription1On siteUnknownUnknown23m EUnknownUnknown


This data is sourced from the British Geological Survey, the Environment Agency and Natural Resources Wales.

Bedrock aquifer

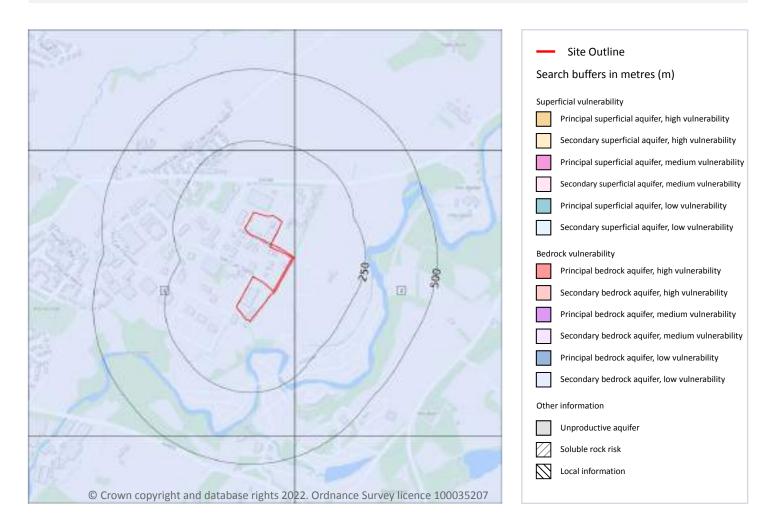
5.2 Bedrock aquifer

Records within 500m

Aquifer status of groundwater held within bedrock geology.

Features are displayed on the Bedrock aquifer map on page 58

ID	Location	Designation	Description
1	On site	Secondary (undifferentiated)	Assigned where it is not possible to attribute either category A or B to a rock type. In general these layers have previously been designated as both minor and non- aquifer in different locations due to the variable characteristics of the rock type
2	3m E	Secondary (undifferentiated)	Assigned where it is not possible to attribute either category A or B to a rock type. In general these layers have previously been designated as both minor and non-aquifer in different locations due to the variable characteristics of the rock type


This data is sourced from the British Geological Survey, the Environment Agency and Natural Resources Wales.

Groundwater vulnerability

5.3 Groundwater vulnerability

Records within 50m

2

An assessment of the vulnerability of groundwater to a pollutant discharged at ground level based on the hydrological, geological, hydrogeological and soil properties within a one kilometre square grid. Groundwater vulnerability is described as High, Medium or Low as follows:

- High Areas able to easily transmit pollution to groundwater. They are likely to be characterised by high leaching soils and the absence of low permeability superficial deposits.
- Medium Intermediate between high and low vulnerability.
- Low Areas that provide the greatest protection from pollution. They are likely to be characterised by low leaching soils and/or the presence of superficial deposits characterised by a low permeability.

Features are displayed on the Groundwater vulnerability map on page 60

ID	Location	Summary	Soil / surface	Superficial geology	Bedrock geology
1	On site	Summary Classification: Secondary bedrock aquifer - Low Vulnerability Combined classification: Productive Bedrock Aquifer, Unproductive Superficial Aquifer	Leaching class: High Infiltration value: >70% Dilution value: >550mm/year	Vulnerability: - Aquifer type: Unknown (lakes+landslip) Thickness: >10m Patchiness value: >90% Recharge potential: Low	Vulnerability: Low Aquifer type: Secondary Flow mechanism: Well connected fractures
2	3m E	Summary Classification: Secondary bedrock aquifer - Low Vulnerability Combined classification: Productive Bedrock Aquifer, Unproductive Superficial Aquifer	Leaching class: High Infiltration value: >70% Dilution value: >550mm/year	Vulnerability: - Aquifer type: Unknown (lakes+landslip) Thickness: >10m Patchiness value: >90% Recharge potential: Low	Vulnerability: Low Aquifer type: Secondary Flow mechanism: Well connected fractures

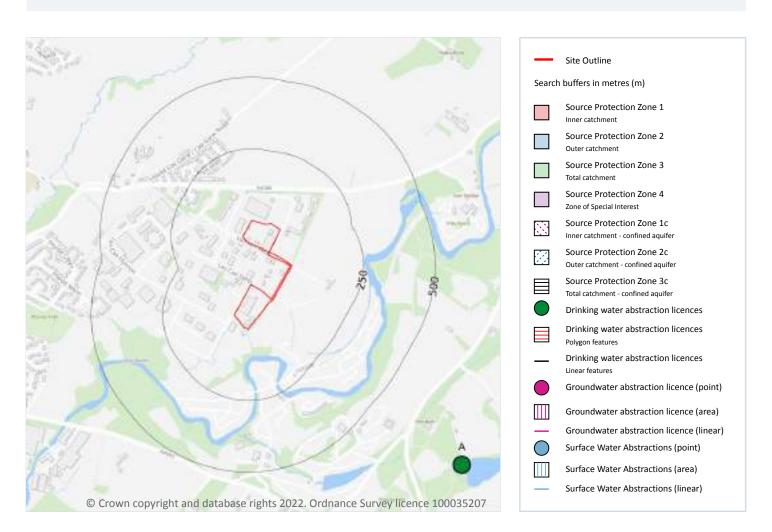
This data is sourced from the British Geological Survey, the Environment Agency and Natural Resources Wales.

5.4 Groundwater vulnerability- soluble rock risk

Records on site)
This dataset identifies areas where solution features that enable rapid movement of a pollutant may b present within a 1km grid square.	е
This data is sourced from the British Geological Survey and the Environment Agency.	

5.5 Groundwater vulnerability- local information

Records on site


This dataset identifies areas where additional local information affecting vulnerability is held by the Environment Agency. Further information can be obtained by contacting the Environment Agency local Area groundwater team through the Environment Agency National Customer Call Centre on 03798 506 506 or by email on enquiries@environment-agency.gov.uk.

This data is sourced from the British Geological Survey and the Environment Agency.

Abstractions and Source Protection Zones

5.6 Groundwater abstractions

Records within 2000m

Licensed groundwater abstractions for sites extracting more than 20 cubic metres of water a day and includes active and historical records. The data may be for a single abstraction point, between two points (line data) or a larger area.

This data is sourced from the Environment Agency and Natural Resources Wales.

5.7 Surface water abstractions

Records within 2000m

9

Licensed surface water abstractions for sites extracting more than 20 cubic metres of water a day and includes active and historical records. The data may be for a single abstraction point, a stretch of watercourse or a larger area.

Features are displayed on the Abstractions and Source Protection Zones map on page 62

ID	Location	Details	
А	875m SE	Status: Historical Licence No: 23/65/16/0039 Details: Drinking, Cooking, Sanitary, Washing, (Small Garden) - Household Direct Source: EAW Surface Water Point: POND AT GLAN GWNA, CAEATHRAW Data Type: Point Name: Glan Gwna Holiday Park Ltd Easting: 250590 Northing: 361930	Annual Volume (m ³): 93502.1 Max Daily Volume (m ³): 256.17 Original Application No: - Original Start Date: 24/06/1968 Expiry Date: - Issue No: 100 Version Start Date: 11/09/2006 Version End Date: -
А	875m SE	Status: Historical Licence No: 23/65/16/0039 Details: Drinking, Cooking, Sanitary Washing (small garden) - Household - Medium Direct Source: - Point: - Data Type: Point Name: - Easting: 250590 Northing: 361930	Annual Volume (m ³): 93,502.10 Max Daily Volume (m ³): - Original Application No: - Original Start Date: Sep 11 2006 12:00AM Expiry Date: - Issue No: - Version Start Date: - Version End Date: -
-	1135m SW	Status: Historical Licence No: 23/65/16/0070 Details: Process Water Direct Source: EAW Surface Water Point: ON SITE LAGOON AT SEIONT BRICKWORKS Data Type: Point Name: Hanson Brick Easting: 249110 Northing: 361530	Annual Volume (m ³): 12000 Max Daily Volume (m ³): 35 Original Application No: - Original Start Date: 20/06/2006 Expiry Date: 31/03/2013 Issue No: 1 Version Start Date: 01/04/2008 Version End Date: -
-	1389m SW	Status: Historical Licence No: 23/65/16/0019 Details: Lake & Pond Throughflow Direct Source: EAW Surface Water Point: ORNAMENTAL PARK LAKE Data Type: Point Name: Cyngor Gwynedd Easting: 248770 Northing: 361510	Annual Volume (m ³): 382300 Max Daily Volume (m ³): 1047.4 Original Application No: - Original Start Date: 29/11/1965 Expiry Date: - Issue No: 100 Version Start Date: 01/04/2005 Version End Date: -

ID	Location	Details	
-	1389m SW	Status: Active Licence No: 23/65/16/0019 Details: Lake & Pond Throughflow - Very Low Direct Source: - Point: - Data Type: Point Name: - Easting: 248770 Northing: 361510	Annual Volume (m ³): 382,300.42 Max Daily Volume (m ³): 1,047.36 Original Application No: - Original Start Date: Apr 1 2005 12:00AM Expiry Date: - Issue No: - Version Start Date: - Version End Date: -
-	1422m SW	Status: Historical Licence No: 23/65/16/0008 Details: General Washing/Process Washing Direct Source: EAW Surface Water Point: RIVER SEIONT, CAERNARFON Data Type: Point Name: Hanson Brick Easting: 248770 Northing: 361460	Annual Volume (m ³): - Max Daily Volume (m ³): - Original Application No: - Original Start Date: 25/10/1965 Expiry Date: - Issue No: 100 Version Start Date: 01/01/2000 Version End Date: -
-	1422m SW	Status: Historical Licence No: 23/65/16/0008 Details: Process Water Direct Source: EAW Surface Water Point: AFON SEIONT Data Type: Point Name: Hanson Brick Easting: 248770 Northing: 361460	Annual Volume (m ³): 6819 Max Daily Volume (m ³): 27.276 Original Application No: - Original Start Date: 25/10/1965 Expiry Date: - Issue No: 100 Version Start Date: 01/04/2008 Version End Date: -
-	1681m SE	Status: Historical Licence No: 23/65/16/0015 Details: General Farming & Domestic Direct Source: EAW Surface Water Point: SPRING AT PRYSGOL FARM, CAEATHRAW Data Type: Point Name: Glan Gwna Holiday Park Ltd Easting: 251340 Northing: 361590	Annual Volume (m ³): 2556.44 Max Daily Volume (m ³): 7.004 Original Application No: - Original Start Date: 29/11/1965 Expiry Date: - Issue No: 100 Version Start Date: 08/02/2008 Version End Date: -
-	1681m SE	Status: Historical Licence No: 23/65/16/0015 Details: Drinking, Cooking, Sanitary, Washing, (Small Garden) - Commercial/Industrial/Public Services Direct Source: EAW Surface Water Point: SPRING AT PRYSGOL FARM, CAEATHRAW Data Type: Point Name: Glan Gwna Holiday Park Ltd Easting: 251340 Northing: 361590	Annual Volume (m ³): 2556.44 Max Daily Volume (m ³): 7.004 Original Application No: - Original Start Date: 29/11/1965 Expiry Date: - Issue No: 100 Version Start Date: 08/02/2008 Version End Date: -

3

5.8 Potable abstractions

Records within 2000m

Licensed potable water abstractions for sites extracting more than 20 cubic metres of water a day and includes active and historical records. The data may be for a single abstraction point, a stretch of watercourse or a larger area.

Features are displayed on the Abstractions and Source Protection Zones map on page 62

ID	Location	Details	
А	875m SE	Status: Historical Licence No: 23/65/16/0039 Details: Drinking, Cooking, Sanitary, Washing, (Small Garden) - Household Direct Source: EAW Surface Water Point: POND AT GLAN GWNA, CAEATHRAW Data Type: Point Name: Glan Gwna Holiday Park Ltd Easting: 250590 Northing: 361930	Annual Volume (m ³): 93502.1 Max Daily Volume (m ³): 256.17 Original Application No: - Original Start Date: 24/06/1968 Expiry Date: - Issue No: 100 Version Start Date: 11/09/2006 Version End Date: -
A	875m SE	Status: Historical Licence No: 23/65/16/0039 Details: Drinking, Cooking, Sanitary Washing (small garden) - Household - Medium Direct Source: - Point: - Data Type: Point Name: - Easting: 250590 Northing: 361930	Annual Volume (m ³): 93,502.10 Max Daily Volume (m ³): - Original Application No: - Original Start Date: Sep 11 2006 12:00AM Expiry Date: - Issue No: - Version Start Date: - Version End Date: -
-	1681m SE	Status: Historical Licence No: 23/65/16/0015 Details: Drinking, Cooking, Sanitary, Washing, (Small Garden) - Commercial/Industrial/Public Services Direct Source: EAW Surface Water Point: SPRING AT PRYSGOL FARM, CAEATHRAW Data Type: Point Name: Glan Gwna Holiday Park Ltd Easting: 251340 Northing: 361590	Annual Volume (m ³): 2556.44 Max Daily Volume (m ³): 7.004 Original Application No: - Original Start Date: 29/11/1965 Expiry Date: - Issue No: 100 Version Start Date: 08/02/2008 Version End Date: -

5.9 Source Protection Zones

Records within 500m

Source Protection Zones define the sensitivity of an area around a potable abstraction site to contamination.

This data is sourced from the Environment Agency and Natural Resources Wales.

5.10 Source Protection Zones (confined aquifer)

Records within 500m

Source Protection Zones in the confined aquifer define the sensitivity around a deep groundwater abstraction to contamination. A confined aquifer would normally be protected from contamination by overlying geology and is only considered a sensitive resource if deep excavation/drilling is taking place.

This data is sourced from the Environment Agency and Natural Resources Wales.

0

6 Hydrology

6.1 Water Network (OS MasterMap)

Records within 250m

Detailed water network of Great Britain showing the flow and precise central course of every river, stream, lake and canal.

Features are displayed on the Hydrology map on page 67

ID	Location	Type of water feature	Ground level	Permanence	Name
В	On site	Inland river not influenced by normal tidal action.	On ground surface	Watercourse contains water year round (in normal circumstances)	-

ID	Location	Type of water feature	Ground level	Permanence	Name
С	55m SW	Inland river not influenced by normal tidal action.	On ground surface	Watercourse contains water year round (in normal circumstances)	-
С	59m SW	Inland river not influenced by normal tidal action.	Underground	Watercourse contains water year round (in normal circumstances)	-
D	61m SW	Inland river not influenced by normal tidal action.	On ground surface	Watercourse contains water year round (in normal circumstances)	-
3	66m SE	Inland river not influenced by normal tidal action.	Not provided	Watercourse contains water year round (in normal circumstances)	-
A	75m SE	Inland river not influenced by normal tidal action.	On ground surface	Watercourse contains water year round (in normal circumstances)	-
E	83m S	Inland river not influenced by normal tidal action.	On ground surface	Watercourse contains water year round (in normal circumstances)	-
E	97m S	Inland river not influenced by normal tidal action.	On ground surface	Watercourse contains water year round (in normal circumstances)	-
F	100m N	Inland river not influenced by normal tidal action.	On ground surface	Watercourse contains water year round (in normal circumstances)	-
E	102m S	Inland river not influenced by normal tidal action.	On ground surface	Watercourse contains water year round (in normal circumstances)	Afon Seiont
4	104m S	Inland river not influenced by normal tidal action.	On ground surface	Watercourse contains water year round (in normal circumstances)	Afon Seiont
E	105m S	Inland river not influenced by normal tidal action.	On ground surface	Watercourse contains water year round (in normal circumstances)	Afon Seiont
E	120m SE	Inland river not influenced by normal tidal action.	On ground surface	Watercourse contains water year round (in normal circumstances)	Afon Seiont
E	146m SE	Inland river not influenced by normal tidal action.	On ground surface	Watercourse contains water year round (in normal circumstances)	-

ID	Location	Type of water feature	Ground level	Permanence	Name
E	146m SE	Inland river not influenced by normal tidal action.	Underground	Watercourse contains water year round (in normal circumstances)	-
E	151m SE	Inland river not influenced by normal tidal action.	On ground surface	Watercourse contains water year round (in normal circumstances)	Afon Seiont
G	168m SW	Inland river not influenced by normal tidal action.	Underground	Watercourse contains water year round (in normal circumstances)	-
G	169m SW	Inland river not influenced by normal tidal action.	On ground surface	Watercourse contains water year round (in normal circumstances)	-
6	174m SE	Inland river not influenced by normal tidal action.	On ground surface	Watercourse contains water year round (in normal circumstances)	Afon Seiont
E	174m SE	Inland river not influenced by normal tidal action.	On ground surface	Watercourse contains water year round (in normal circumstances)	-
G	189m SW	Inland river not influenced by normal tidal action.	On ground surface	Watercourse contains water year round (in normal circumstances)	-
G	199m SW	Inland river not influenced by normal tidal action.	On ground surface	Watercourse contains water year round (in normal circumstances)	-
E	206m SE	Inland river not influenced by normal tidal action.	Underground	Watercourse contains water year round (in normal circumstances)	-
Н	214m SE	Inland river not influenced by normal tidal action.	On ground surface	Watercourse contains water year round (in normal circumstances)	-
I	249m W	Inland river not influenced by normal tidal action.	On ground surface	Watercourse contains water year round (in normal circumstances)	-

This data is sourced from the Ordnance Survey.

6.2 Surface water features

Records within 250m

Covering rivers, streams and lakes (some overlap with OS MasterMap Water Network data in previous section) but additionally covers smaller features such as ponds. Rivers and streams narrower than 5m are represented as a single line. Lakes, ponds and rivers or streams wider than 5m are represented as polygons.

Features are displayed on the Hydrology map on page 67

This data is sourced from the Ordnance Survey.

6.3 WFD Surface water body catchments

Records on site 1

The Water Framework Directive is an EU-led framework for the protection of inland surface waters, estuaries, coastal waters and groundwater through river basin-level management planning. In terms of surface water, these basins are broken down into smaller units known as management, operational and water body catchments.

Features are displayed on the Hydrology map on page 67

ID	Location	Туре	Water body catchment	Water body ID	Operational catchment	Management catchment
A	On site	River WB catchment	Seiont	GB110065054040	Gwyrfai Seiont	Llyn and Eryri

This data is sourced from the Environment Agency and Natural Resources Wales.

6.4 WFD Surface water bodies

Records identified

Surface water bodies under the Directive may be rivers, lakes, estuary or coastal. To achieve the purpose of the Directive, environmental objectives have been set and are reported on for each water body. The progress towards delivery of the objectives is then reported on by the relevant competent authorities at the end of each six-year cycle. The river water body directly associated with the catchment listed in the previous section is detailed below, along with any lake, canal, coastal or artificial water body within 250m of the site.

Features are displayed on the Hydrology map on page 67

ID	Location	Туре	Name	Water body ID	Overall rating	Chemical rating	Ecological rating	Year
5	107m S	River	Seiont	GB110065054040	Good	Good	Good	2016

This data is sourced from the Environment Agency and Natural Resources Wales.

12

1

6.5 WFD Groundwater bodies

Records on site

Groundwater bodies are also covered by the Directive and the same regime of objectives and reporting detailed in the previous section is in place.

Features are displayed on the Hydrology map on page 67

ID	Location	Name	Water body ID	Overall rating	Chemical rating	Quantitative	Year
1	On site	Llyn and Eryri	GB41002G204600	Poor	Poor	Good	2017

7 River and coastal flooding

7.1 Risk of flooding from rivers and the sea

Records within 50m

The chance of flooding from rivers and/or the sea in any given year, based on cells of 50m within the Risk of Flooding from Rivers and Sea (RoFRaS)/Flood Risk Assessment Wales (FRAW) models. Each cell is allocated one of four flood risk categories, taking into account flood defences and their condition. The risk categories for RoFRaS for rivers and the sea and FRAW for rivers are; Very low (less than 1 in 1000 chance in any given year), Low (less than 1 in 100 but greater than or equal to 1 in 1000 chance). The risk categories for FRAW for the sea are; Very low (less than 0 requal to 1 in 30 but greater than or equal to 1 in 30 chance). The risk categories for FRAW for the sea are; Very low (less than 1 in 200 but greater than or equal to 1 in 1000 chance in any given year), Low (less than 1 in 200 but greater than or equal to 1 in 30 but greater than or equal to 1 in 30 chance). The risk categories for FRAW for the sea are; Very low (less than 1 in 1000 chance), Medium (less than 1 in 200 but greater than or equal to 1 in 30 chance). The risk categories for FRAW for the sea are; Very low (less than 1 in 1000 chance), Medium (less than 1 in 200 but greater than or equal to 1 in 1000 chance), Medium (less than 1 in 30 but greater than or equal to 1 in 200 chance) or High (greater than or equal to 1 in 30 chance).

This data is sourced from the Environment Agency and Natural Resources Wales.

7.2 Historical Flood Events

Records within 250m

Records of historic flooding from rivers, the sea, groundwater and surface water. Records began in 1946 when predecessor bodies started collecting detailed information about flooding incidents, although limited details may be included on flooding incidents prior to this date. Takes into account the presence of defences, structures, and other infrastructure where they existed at the time of flooding, and includes flood extents that may have been affected by overtopping, breaches or blockages.

This data is sourced from the Environment Agency and Natural Resources Wales.

7.3 Flood Defences

Records within 250m

Records of flood defences owned, managed or inspected by the Environment Agency and Natural Resources Wales. Flood defences can be structures, buildings or parts of buildings. Typically these are earth banks, stone and concrete walls, or sheet-piling that is used to prevent or control the extent of flooding.

This data is sourced from the Environment Agency and Natural Resources Wales.

0

0

0

0

7.4 Areas Benefiting from Flood Defences

Records within 250m

Areas that would benefit from the presence of flood defences in a 1 in 100 (1%) chance of flooding each year from rivers or 1 in 200 (0.5%) chance of flooding each year from the sea.

This data is sourced from the Environment Agency and Natural Resources Wales.

7.5 Flood Storage Areas

Records within 250m

Areas that act as a balancing reservoir, storage basin or balancing pond to attenuate an incoming flood peak to a flow level that can be accepted by the downstream channel or to delay the timing of a flood peak so that its volume is discharged over a longer period.

0

0

River and coastal flooding - Flood Zones

7.6 Flood Zone 2

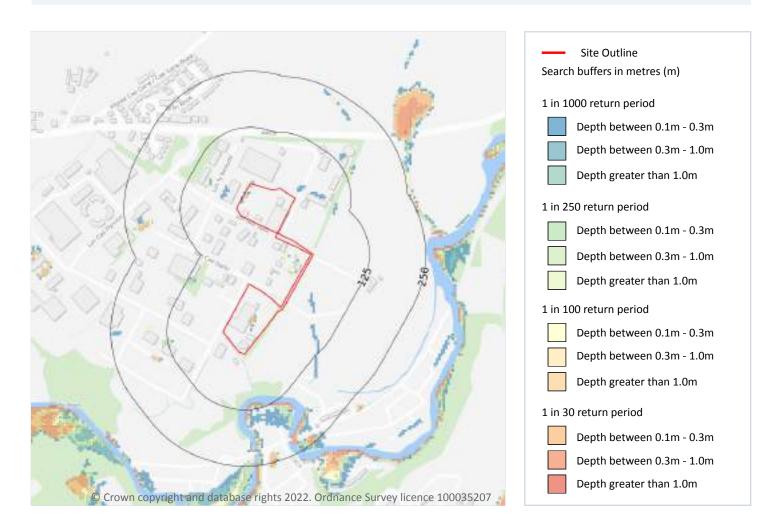
Records within 50m

Areas of land at risk of flooding, when the presence of flood defences are ignored. Covering land between Flood Zone 3 (see next section) and the extent of the flooding from rivers or the sea with a 1 in 1000 (0.1%) chance of flooding each year.

This data is sourced from the Environment Agency and Natural Resources Wales.

7.7 Flood Zone 3

Records within 50m


Areas of land at risk of flooding, when the presence of flood defences are ignored. Covering land with a 1 in 100 (1%) or greater chance of flooding each year from rivers or a 1 in 200 (0.5%) or greater chance of flooding each year from the sea.

8 Surface water flooding

8.1 Surface water flooding

Highest risk on site

1 in 30 year, 0.1m - 0.3m

1 in 30 year, 0.1m - 0.3m

Highest risk within 50m

Ambiental Risk Analytics surface water (pluvial) FloodMap identifies areas likely to flood as a result of extreme rainfall events, i.e. land naturally vulnerable to surface water ponding or flooding. This data set was produced by simulating 1 in 30 year, 1 in 100 year, 1 in 250 year and 1 in 1,000 year rainfall events. Modern urban drainage systems are typically built to cope with rainfall events between 1 in 20 and 1 in 30 years, though some older ones may flood in a 1 in 5 year rainfall event.

Features are displayed on the Surface water flooding map on page 75

The data shown on the map and in the table above shows the highest likelihood of flood events happening at the site. Lower likelihood events may have greater flood depths and hence a greater potential impact on a site.

The table below shows the maximum flood depths for a range of return periods for the site.

Return period	Maximum modelled depth
1 in 1000 year	Between 0.3m and 1.0m
1 in 250 year	Between 0.3m and 1.0m
1 in 100 year	Between 0.3m and 1.0m
1 in 30 year	Between 0.1m and 0.3m

This data is sourced from Ambiental Risk Analytics.

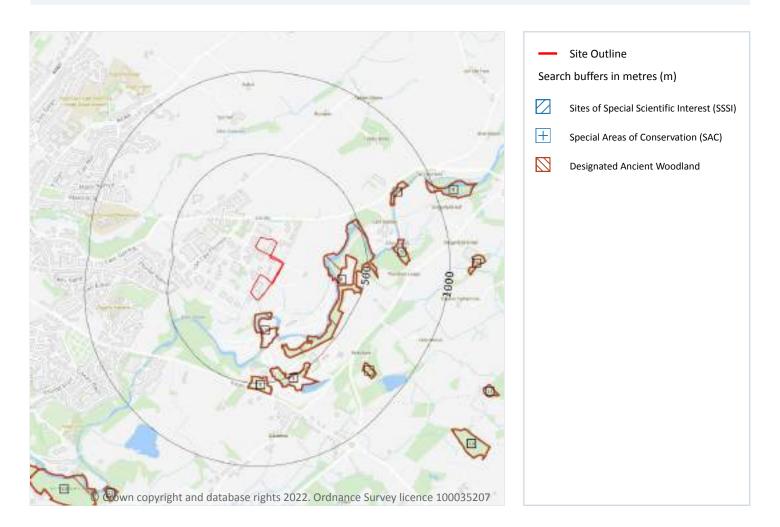
9 Groundwater flooding

9.1 Groundwater flooding

Highest risk on site	Low
Highest risk within 50m	Low

Groundwater flooding is caused by unusually high groundwater levels. It occurs when the water table rises above the ground surface or within underground structures such as basements or cellars. Groundwater flooding tends to exhibit a longer duration than surface water flooding, possibly lasting for weeks or months, and as a result it can cause significant damage to property. This risk assessment is based on a 1 in 100 year return period and a 5m Digital Terrain Model (DTM).

Features are displayed on the Groundwater flooding map on page 77


This data is sourced from Ambiental Risk Analytics.

10 Environmental designations

10.1 Sites of Special Scientific Interest (SSSI)

Records within 2000m

Sites providing statutory protection for the best examples of UK flora, fauna, or geological or physiographical features. Originally notified under the National Parks and Access to the Countryside Act 1949, SSSIs were renotified under the Wildlife and Countryside Act 1981. Improved provisions for the protection and management of SSSIs were introduced by the Countryside and Rights of Way Act 2000 (in England and Wales) and (in Scotland) by the Nature Conservation (Scotland) Act 2004 and the Wildlife and Natural Environment (Scotland) Act 2010.

Features are displayed on the Environmental designations map on page 78

ID	Location	Name	Data source
-	1548m SW	AFON SEIONT	Natural Resources Wales

0

1

ID	Location	Name	Data source
-	1694m W	AFON SEIONT	Natural Resources Wales

This data is sourced from Natural England, Natural Resources Wales and Scottish Natural Heritage.

10.2 Conserved wetland sites (Ramsar sites)

Records within 2000m

Ramsar sites are designated under the Convention on Wetlands of International Importance, agreed in Ramsar, Iran, in 1971. They cover all aspects of wetland conservation and wise use, recognizing wetlands as ecosystems that are extremely important for biodiversity conservation in general and for the well-being of human communities. These sites cover a broad definition of wetland; marsh, fen, peatland or water, whether natural or artificial, permanent or temporary, with water that is static or flowing, fresh, brackish or salt, and even some marine areas.

This data is sourced from Natural England, Natural Resources Wales and Scottish Natural Heritage.

10.3 Special Areas of Conservation (SAC)

Records within 2000m

Areas which have been identified as best representing the range and variety within the European Union of habitats and (non-bird) species listed on Annexes I and II to the Directive. SACs are designated under the EC Habitats Directive.

Features are displayed on the Environmental designations map on page 78

ID	Location	Name	Features of interest	Habitat description	Data source
-	1815m NW	Y Fenai a Bae Conwy / Menai Strait and Conwy Bay	Subtidal sandbanks; Estuaries; Intertidal mudflats and sandflats; Shallow inlets and bays; Reefs; Atlantic salt meadows; Sea caves; Sea lamprey; River lamprey; Allis shad; Twaite shad; Grey seal.	Shingle, Sea cliffs, Islets; Salt marshes, Salt pastures, Salt steppes; Marine areas, Sea inlets; Tidal rivers, Estuaries, Mud flats, Sand flats, Lagoons (including saltwork basins)	Natural Resources Wales

This data is sourced from Natural England, Natural Resources Wales and Scottish Natural Heritage.

10.4 Special Protection Areas (SPA)

Records within 2000m

Sites classified by the UK Government under the EC Birds Directive, SPAs are areas of the most important habitat for rare (listed on Annex I to the Directive) and migratory birds within the European Union.

This data is sourced from Natural England, Natural Resources Wales and Scottish Natural Heritage.

10.5 National Nature Reserves (NNR)

Records within 2000m

Sites containing examples of some of the most important natural and semi-natural terrestrial and coastal ecosystems in Great Britain. They are managed to conserve their habitats, provide special opportunities for scientific study or to provide public recreation compatible with natural heritage interests.

This data is sourced from Natural England, Natural Resources Wales and Scottish Natural Heritage.

10.6 Local Nature Reserves (LNR)

Records within 2000m

Sites managed for nature conservation, and to provide opportunities for research and education, or simply enjoying and having contact with nature. They are declared by local authorities under the National Parks and Access to the Countryside Act 1949 after consultation with the relevant statutory nature conservation agency.

This data is sourced from Natural England, Natural Resources Wales and Scottish Natural Heritage.

10.7 Designated Ancient Woodland

Records within 2000m

Ancient woodlands are classified as areas which have been wooded continuously since at least 1600 AD. This includes semi-natural woodland and plantations on ancient woodland sites. 'Wooded continuously' does not mean there is or has previously been continuous tree cover across the whole site, and not all trees within the woodland have to be old.

Features are displayed on the Environmental designations map on page 78

ID	Location	Name	Woodland Type
1	83m S	Unknown	Ancient Semi Natural Woodland
2	242m E	Unknown	Restored Ancient Woodland Site
3	418m S	Unknown	Restored Ancient Woodland Site
4	460m S	Unknown	Ancient Semi Natural Woodland
5	662m E	Unknown	Ancient Semi Natural Woodland
6	720m E	Unknown	Ancient Semi Natural Woodland
7	733m SE	Unknown	Restored Ancient Woodland Site
8	963m E	Unknown	Ancient Semi Natural Woodland
9	1112m E	Unknown	Ancient Semi Natural Woodland
10	1394m SE	Unknown	Restored Ancient Woodland Site

Contact us with any questions at: info@groundsure.com 08444 159 000

0

0

ID	Location	Name	Woodland Type
11	1418m SE	Unknown	Ancient Semi Natural Woodland
12	1429m SW	Unknown	Ancient Semi Natural Woodland
13	1488m SW	Unknown	Restored Ancient Woodland Site
-	1513m NE	Unknown	Ancient Semi Natural Woodland
-	1574m E	Unknown	Restored Ancient Woodland Site
-	1601m S	Unknown	Ancient Semi Natural Woodland
18	1666m SW	Unknown	Ancient Semi Natural Woodland
-	1696m NE	Unknown	Ancient Semi Natural Woodland
-	1756m W	Unknown	Ancient Semi Natural Woodland
-	1778m SE	Unknown	Restored Ancient Woodland Site

This data is sourced from Natural England, Natural Resources Wales and Scottish Natural Heritage.

10.8 Biosphere Reserves

Records within 2000m	0
Biosphere Reserves are internationally recognised by UNESCO as sites of excellence to balance conse	rvation
and socioeconomic development between nature and people. They are recognised under the Man ar	nd the

Biosphere (MAB) Programme with the aim of promoting sustainable development founded on the work of the

This data is sourced from Natural England, Natural Resources Wales and Scottish Natural Heritage.

10.9 Forest Parks

local community.

Records within 2000m

These are areas managed by the Forestry Commission designated on the basis of recreational, conservation or scenic interest.

This data is sourced from the Forestry Commission.

10.10 Marine Conservation Zones

Records within 2000m

A type of marine nature reserve in UK waters established under the Marine and Coastal Access Act (2009). They are designated with the aim to protect nationally important, rare or threatened habitats and species.

This data is sourced from Natural England, Natural Resources Wales and Scottish Natural Heritage.

10.11 Green Belt

Records within 2000m

Areas designated to prevent urban sprawl by keeping land permanently open.

This data is sourced from the Ministry of Housing, Communities and Local Government.

10.12 Proposed Ramsar sites

Records within 2000m

Ramsar sites are areas listed as a Wetland of International Importance under the Convention on Wetlands of International Importance especially as Waterfowl Habitat (the Ramsar Convention) 1971. The sites here supplied have a status of 'Proposed' having been identified for potential adoption under the framework.

This data is sourced from Natural England.

10.13 Possible Special Areas of Conservation (pSAC)

Records within 2000m

Special Areas of Conservation are areas which have been identified as best representing the range and variety within the European Union of habitats and (non-bird) species listed on Annexes I and II to the Directive. SACs are designated under the EC Habitats Directive. Those sites supplied here are those with a status of 'Possible' having been identified for potential adoption under the framework.

This data is sourced from Natural England and Natural Resources Wales.

10.14 Potential Special Protection Areas (pSPA)

Records within 2000m

Special Protection Areas (SPAs) are areas designated (or 'classified') under the European Union Wild Birds Directive for the protection of nationally and internationally important populations of wild birds. Those sites supplied here are those with a status of 'Potential' having been identified for potential adoption under the framework.

This data is sourced from Natural England.

0

0

0

0

10.15 Nitrate Sensitive Areas

Records within 2000m

Areas where nitrate concentrations in drinking water sources exceeded or was at risk of exceeding the limit of 50 mg/l set by the 1980 EC Drinking Water Directive. Voluntary agricultural measures as a means of reducing the levels of nitrate were introduced by DEFRA as MAFF, with payments being made to farmers who complied. The scheme was started as a pilot in 1990 in ten areas, later implemented within 32 areas. The scheme was closed to further new entrants in 1998, although existing agreements continued for their full term. All Nitrate Sensitive Areas fell within the areas designated as Nitrate Vulnerable Zones (NVZs) in 1996 under the EC Nitrate Directive (91/676/EEC).

This data is sourced from Natural England.

10.16 Nitrate Vulnerable Zones

Records within 2000m

Areas at risk from agricultural nitrate pollution designated under the EC Nitrate Directive (91/676/EEC). These are areas of land that drain into waters polluted by nitrates. Farmers operating within these areas have to follow mandatory rules to tackle nitrate loss from agriculture.

This data is sourced from Natural England and Natural Resources Wales.

0

0

0

SSSI Impact Zones and Units

10.17 SSSI Impact Risk Zones

Records on site

Developed to allow rapid initial assessment of the potential risks to SSSIs posed by development proposals. They define zones around each SSSI which reflect the particular sensitivities of the features for which it is notified and indicate the types of development proposal which could potentially have adverse impacts.

This data is sourced from Natural England.

10.18 SSSI Units

Records within 2000m

Divisions of SSSIs used to record management and condition details. Units are the smallest areas for which Natural England gives a condition assessment, however, the size of units varies greatly depending on the types of management and the conservation interest.

This data is sourced from Natural England and Natural Resources Wales.

11 Visual and cultural designations

11.1 World Heritage Sites

Records within 250m

Sites designated for their globally important cultural or natural interest requiring appropriate management and protection measures. World Heritage Sites are designated to meet the UK's commitments under the World Heritage Convention.

This data is sourced from Historic England, Cadw and Historic Environment Scotland.

11.2 Area of Outstanding Natural Beauty

Records within 250m

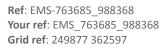
Areas of Outstanding Natural Beauty (AONB) are conservation areas, chosen because they represent 18% of the finest countryside. Each AONB has been designated for special attention because of the quality of their flora, fauna, historical and cultural associations, and/or scenic views. The National Parks and Access to the Countryside Act of 1949 created AONBs and the Countryside and Rights of Way Act, 2000 added further regulation and protection. There are likely to be restrictions to some developments within these areas.

This data is sourced from Natural England, Natural Resources Wales and Scottish Natural Heritage.

11.3 National Parks

Records within 250m

In England and Wales, the purpose of National Parks is to conserve and enhance landscapes within the countryside whilst promoting public enjoyment of them and having regard for the social and economic wellbeing of those living within them. In Scotland National Parks have the additional purpose of promoting the sustainable use of the natural resources of the area and the sustainable social and economic development of its communities. The National Parks and Access to the Countryside Act 1949 established the National Park designation in England and Wales, and The National Parks (Scotland) Act 2000 in Scotland.


This data is sourced from Natural England, Natural Resources Wales and the Scottish Government.

11.4 Listed Buildings

Records within 250m

Buildings listed for their special architectural or historical interest. Building control in the form of 'listed building consent' is required in order to make any changes to that building which might affect its special interest. Listed buildings are graded to indicate their relative importance, however building controls apply to all buildings equally, irrespective of their grade, and apply to the interior and exterior of the building in its entirety, together with any curtilage structures.

0

0

0

0

0

0

This data is sourced from Historic England, Cadw and Historic Environment Scotland.

11.5 Conservation Areas

Records within 250m

Local planning authorities are obliged to designate as conservation areas any parts of their own area that are of special architectural or historic interest, the character and appearance of which it is desirable to preserve or enhance. Designation of a conservation area gives broader protection than the listing of individual buildings. All the features within the area, listed or otherwise, are recognised as part of its character. Conservation area designation is the means of recognising the importance of all factors and of ensuring that planning decisions address the quality of the landscape in its broadest sense.

This data is sourced from Historic England, Cadw and Historic Environment Scotland.

11.6 Scheduled Ancient Monuments

Records within 250m

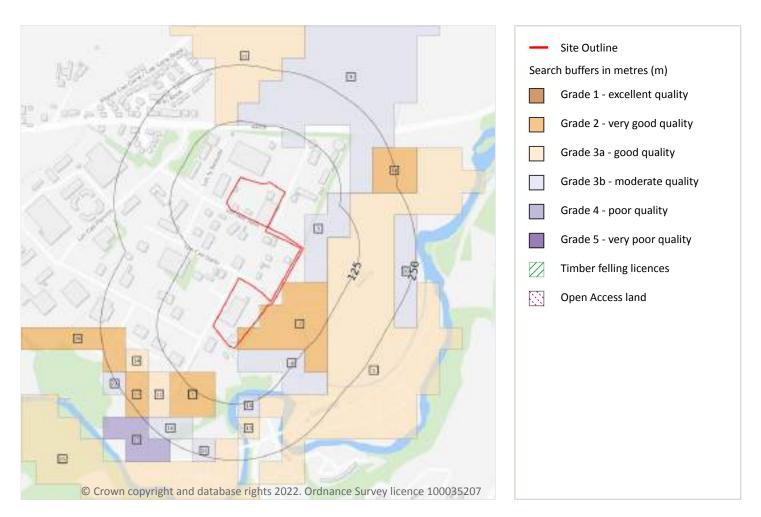
A scheduled monument is an historic building or site that is included in the Schedule of Monuments kept by the Secretary of State for Digital, Culture, Media and Sport. The regime is set out in the Ancient Monuments and Archaeological Areas Act 1979. The Schedule of Monuments has c.20,000 entries and includes sites such as Roman remains, burial mounds, castles, bridges, earthworks, the remains of deserted villages and industrial sites. Monuments are not graded, but all are, by definition, considered to be of national importance.

This data is sourced from Historic England, Cadw and Historic Environment Scotland.

11.7 Registered Parks and Gardens

Records within 250m

Parks and gardens assessed to be of particular interest and of special historic interest. The emphasis being on 'designed' landscapes, rather than on planting or botanical importance. Registration is a 'material consideration' in the planning process, meaning that planning authorities must consider the impact of any proposed development on the special character of the landscape.


This data is sourced from Historic England, Cadw and Historic Environment Scotland.

12 Agricultural designations

12.1 Agricultural Land Classification

Records within 250m

Classification of the quality of agricultural land taking into consideration multiple factors including climate, physical geography and soil properties. It should be noted that the categories for the grading of agricultural land are not consistent across England, Wales and Scotland.

Features are displayed on the Agricultural designations map on page 87

2On siteGrade 2Good quality agricultural land33m EGrade 3bModerate quality agricultural land	ID	Location	ation Classification	Description
3 3m E Grade 3b Moderate quality agricultural land	2	On site	ite Grade 2	Good quality agricultural land
	3	3m E	Grade 3b	Moderate quality agricultural land
4 7m SE Grade 3b Moderate quality agricultural land	4	7m SE	GE Grade 3b	Moderate quality agricultural land

ID	Location	Classification	Description
5	53m E	Grade 3a	Good to moderate quality agricultural land
7	66m SW	Grade 2	Good quality agricultural land
8	82m N	Grade 3b	Moderate quality agricultural land
10	104m S	Grade 3b	Moderate quality agricultural land
11	116m N	Grade 3a	Good to moderate quality agricultural land
12	139m SW	Grade 3a	Good to moderate quality agricultural land
13	154m S	Grade 3a	Good to moderate quality agricultural land
14	155m W	Grade 3a	Good to moderate quality agricultural land
16	177m SW	Grade 3b	Moderate quality agricultural land
17	178m SW	Grade 2	Good quality agricultural land
18	194m E	Grade 2	Good quality agricultural land
19	195m W	Grade 2	Good quality agricultural land
20	203m E	Grade 3b	Moderate quality agricultural land
21	204m S	Grade 3a	Good to moderate quality agricultural land
22	208m S	Grade 3b	Moderate quality agricultural land
23	221m SW	Grade 3b	Moderate quality agricultural land
25	240m SW	Grade 4	Poor quality agricultural land

This data is sourced from Natural Resources Wales.

12.2 Open Access Land

Records within 250m

The Countryside and Rights of Way Act 2000 (CROW Act) gives a public right of access to land without having to use paths. Access land includes mountains, moors, heaths and downs that are privately owned. It also includes common land registered with the local council and some land around the England Coast Path. Generally permitted activities on access land are walking, running, watching wildlife and climbing.

This data is sourced from Natural England and Natural Resources Wales.

12.3 Tree Felling Licences

Records within 250m

Felling Licence Application (FLA) areas approved by Forestry Commission England. Anyone wishing to fell trees must ensure that a licence or permission under a grant scheme has been issued by the Forestry Commission before any felling is carried out or that one of the exceptions apply.

This data is sourced from the Forestry Commission.

12.4 Environmental Stewardship Schemes

Records within 250m

Environmental Stewardship covers a range of schemes that provide financial incentives to farmers, foresters and land managers to look after and improve the environment. The schemes identified may be historical schemes that have now expired, or may still be active.

This data is sourced from Natural England.

12.5 Countryside Stewardship Schemes

Records within 250m

Countryside Stewardship covers a range of schemes that provide financial incentives to farmers, foresters and land managers to look after and improve the environment. Main objectives are to improve the farmed environment for wildlife and to reduce diffuse water pollution.

This data is sourced from Natural England.

0

0

13 Habitat designations

13.1 Priority Habitat Inventory

Records within 250m

Habitats of principal importance as named under Natural Environment and Rural Communities Act (2006) Section 41.

This data is sourced from Natural England.

13.2 Habitat Networks

Records within 250m

Habitat networks for 18 priority habitat networks (based primarily, but not exclusively, on the priority habitat inventory) and areas suitable for the expansion of networks through restoration and habitat creation.

This data is sourced from Natural England.

13.3 Open Mosaic Habitat

Records within 250m

Sites verified as Open Mosaic Habitat. Mosaic habitats are brownfield sites that are identified under the UK Biodiversity Action Plan as a priority habitat due to the habitat variation within a single site, supporting an array of invertebrates.

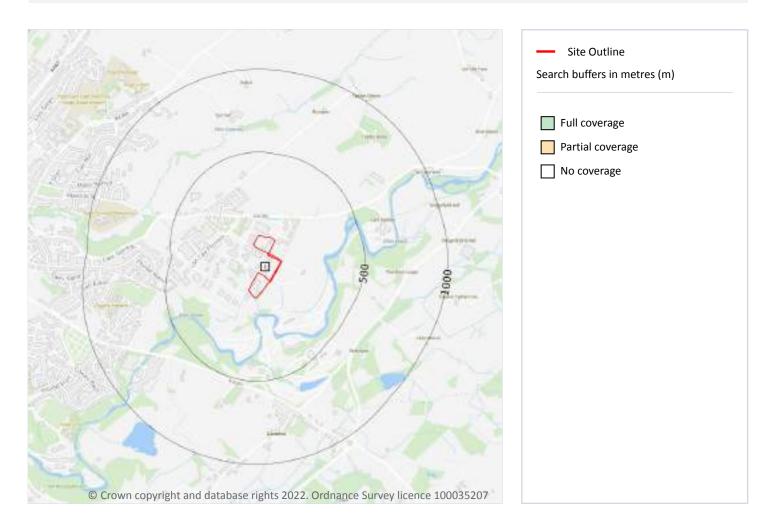
This data is sourced from Natural England.

13.4 Limestone Pavement Orders

Records within 250m

Limestone pavements are outcrops of limestone where the surface has been worn away by natural means over millennia. These rocks have the appearance of paving blocks, hence their name. Not only do they have geological interest, they also provide valuable habitats for wildlife. These habitats are threatened due to their removal for use in gardens and water features. Many limestone pavements have been designated as SSSIs which affords them some protection. In addition, Section 34 of the Wildlife and Countryside Act 1981 gave them additional protection via the creation of Limestone Pavement Orders, which made it a criminal offence to remove any part of the outcrop. The associated Limestone Pavement Priority Habitat is part of the UK Biodiversity Action Plan priority habitat in England.

This data is sourced from Natural England.


0

0

0

14.1 10k Availability

Records within 500m	1
An indication on the coverage of 1:10,000 scale geology data for the site, the most detailed dataset	provided
by the British Geological Survey. Either 'Full', 'Partial' or 'No coverage' for each geological theme.	

Features are displayed on the Geology 1:10,000 scale - Availability map on page 91

ID	Location	Artificial	Superficial	Bedrock	Mass movement	Sheet No.
1	On site	No coverage	No coverage	No coverage	No coverage	ΝοϹον

Geology 1:10,000 scale - Artificial and made ground

14.2 Artificial and made ground (10k)

Records within 500m

0

Details of made, worked, infilled, disturbed and landscaped ground at 1:10,000 scale. Artificial ground can be associated with potentially contaminated material, unpredictable engineering conditions and instability.

0

0

Geology 1:10,000 scale - Superficial

14.3 Superficial geology (10k)

Records within 500m

Superficial geological deposits at 1:10,000 scale. Also known as 'drift', these are the youngest geological deposits, formed during the Quaternary. They rest on older deposits or rocks referred to as bedrock.

This data is sourced from the British Geological Survey.

14.4 Landslip (10k)

Records within 500m

Mass movement deposits on BGS geological maps at 1:10,000 scale. Primarily superficial deposits that have moved down slope under gravity to form landslips. These affect bedrock, other superficial deposits and artificial ground.

0

0

Geology 1:10,000 scale - Bedrock

14.5 Bedrock geology (10k)

Records within 500m

Bedrock geology at 1:10,000 scale. The main mass of rocks forming the Earth and present everywhere, whether exposed at the surface in outcrops or concealed beneath superficial deposits or water.

This data is sourced from the British Geological Survey.

14.6 Bedrock faults and other linear features (10k)

Records within 500m

Linear features at the ground or bedrock surface at 1:10,000 scale of six main types; rock, fault, fold axis, mineral vein, alteration area or landform. Features are either observed or inferred, and relate primarily to bedrock.

15 Geology 1:50,000 scale - Availability

15.1 50k Availability

Records within 500m

An indication on the coverage of 1:50,000 scale geology data for the site. Either 'Full' or 'No coverage' for each geological theme. Where 50k data is not available, this area has been filled in with 625k scale data.

Features are displayed on the Geology 1:50,000 scale - Availability map on page 95

ID	Location	Artificial	Superficial	Bedrock	Mass movement	Sheet No.
1	On site	No coverage	Full	Full	No coverage	EW105_anglesey_v4

This data is sourced from the British Geological Survey.

0

0

Geology 1:50,000 scale - Artificial and made ground

15.2 Artificial and made ground (50k)

Records within 500m

Details of made, worked, infilled, disturbed and landscaped ground at 1:50,000 scale. Artificial ground can be associated with potentially contaminated material, unpredictable engineering conditions and instability.

This data is sourced from the British Geological Survey.

15.3 Artificial ground permeability (50k)

Records within 50m

A qualitative classification of estimated rates of vertical movement of water from the ground surface through the unsaturated zone of any artificial deposits (the zone between the land surface and the water table).

Geology 1:50,000 scale - Superficial

15.4 Superficial geology (50k)

Records within 500m

Superficial geological deposits at 1:50,000 scale. Also known as 'drift', these are the youngest geological deposits, formed during the Quaternary. They rest on older deposits or rocks referred to as bedrock.

Features are displayed on the Geology 1:50,000 scale - Superficial map on page 97

ID	Location	LEX Code	Description	Rock description
1	On site	TILLD- DMTN	TILL, DEVENSIAN	DIAMICTON
2	86m S	ALV-XVSZC	ALLUVIUM	GRAVEL, SAND, SILT AND CLAY
3	283m S	GFICD-XSV	GLACIOFLUVIAL ICE CONTACT DEPOSITS, DEVENSIAN	SAND AND GRAVEL

ID	Location	LEX Code	Description	Rock description
4	285m S	RTDU-XVSZ	RIVER TERRACE DEPOSITS (UNDIFFERENTIATED)	GRAVEL, SAND AND SILT
А	359m SW	SUPNM- UKNOWN	SUPERFICIAL THEME NOT MAPPED [FOR DIGITAL MAP USE ONLY]	UNKNOWN/UNCLASSIFIED ENTRY
5	381m S	ALF-XSV	ALLUVIAL FAN DEPOSITS	SAND AND GRAVEL
6	499m SW	GFTDD-XSV	GLACIOFLUVIAL TERRACE DEPOSITS, DEVENSIAN	SAND AND GRAVEL
7	500m SW	GFSDD-XSV	GLACIOFLUVIAL SHEET DEPOSITS, DEVENSIAN	SAND AND GRAVEL

This data is sourced from the British Geological Survey.

15.5 Superficial permeability (50k)

R	ecords w	/ithi r	1 50m											1	2	
_						~				~			~			

A qualitative classification of estimated rates of vertical movement of water from the ground surface through the unsaturated zone of any superficial deposits (the zone between the land surface and the water table).

Location	Flow type	Maximum permeability	Minimum permeability
On site	Mixed	High	Low
3m NE	Mixed	High	Low

This data is sourced from the British Geological Survey.

15.6 Landslip (50k)

Records withi	n 500m	1			1	

Mass movement deposits on BGS geological maps at 1:50,000 scale. Primarily superficial deposits that have moved down slope under gravity to form landslips. These affect bedrock, other superficial deposits and artificial ground.

Features are displayed on the Geology 1:50,000 scale - Superficial map on page 97

ID	Location	LEX Code	Description	Rock description
А	359m SW	SLIP-UKNOWN	LANDSLIDE DEPOSITS	UNKNOWN/UNCLASSIFIED ENTRY

0

15.7 Landslip permeability (50k)

Records within 50m

A qualitative classification of estimated rates of vertical movement of water from the ground surface through the unsaturated zone of any landslip deposits (the zone between the land surface and the water table).

Geology 1:50,000 scale - Bedrock

15.8 Bedrock geology (50k)

Records within 500m

Bedrock geology at 1:50,000 scale. The main mass of rocks forming the Earth and present everywhere, whether exposed at the surface in outcrops or concealed beneath superficial deposits or water.

Features are displayed on the Geology 1:50,000 scale - Bedrock map on page 100

ID	Location	LEX Code	Description	Rock age
1	On site	NFR-SLST	NANT FFRANCON SUBGROUP - SILTSTONE	-

This data is sourced from the British Geological Survey.

15.9 Bedrock permeability (50k)

Records within 50m 2	
----------------------	--

A qualitative classification of estimated rates of vertical movement of water from the ground surface through the unsaturated zone of bedrock (the zone between the land surface and the water table).

Location	Flow type	Maximum permeability	Minimum permeability
On site	Fracture	Moderate	Low
3m NE	Fracture	Moderate	Low

This data is sourced from the British Geological Survey.

15.10 Bedrock faults and other linear features (50k)

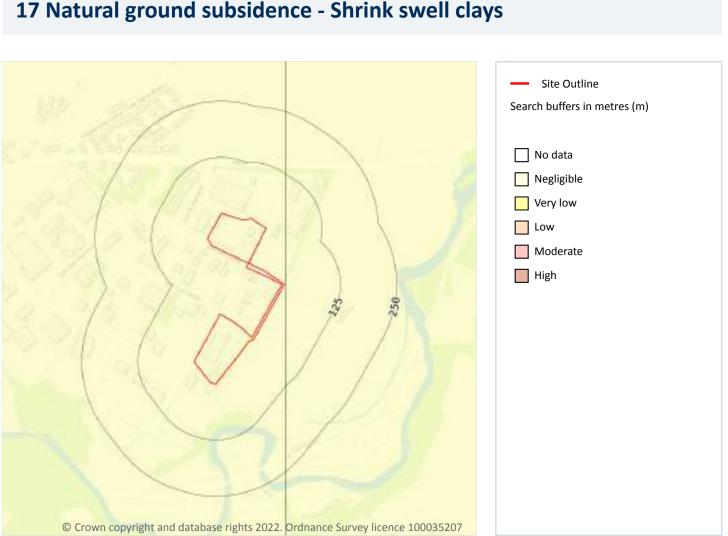
Records within 500m	Records within 500m	0
---------------------	---------------------	---

Linear features at the ground or bedrock surface at 1:50,000 scale of six main types; rock, fault, fold axis, mineral vein, alteration area or landform. Features are either observed or inferred, and relate primarily to bedrock.

16 Boreholes

16.1 BGS Boreholes

Records within 250m


The Single Onshore Boreholes Index (SOBI); an index of over one million records of boreholes, shafts and wells from all forms of drilling and site investigation work held by the British Geological Survey. Covering onshore and nearshore boreholes dating back to at least 1790 and ranging from one to several thousand metres deep.

This data is sourced from the British Geological Survey.

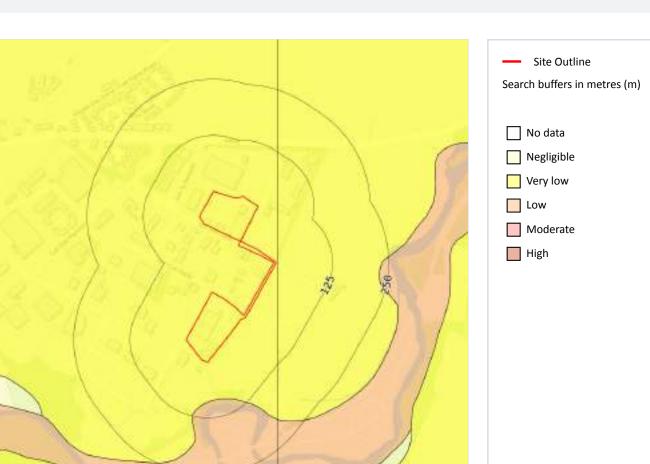
17 Natural ground subsidence - Shrink swell clays

17.1 Shrink swell clays

Records within 50m

The potential hazard presented by soils that absorb water when wet (making them swell), and lose water as they dry (making them shrink). This shrink-swell behaviour is controlled by the type and amount of clay in the soil, and by seasonal changes in the soil moisture content (related to rainfall and local drainage).

Features are displayed on the Natural ground subsidence - Shrink swell clays map on page 103


Location	Hazard rating	Details
On site	Negligible	Ground conditions predominantly non-plastic.
3m E	Negligible	Ground conditions predominantly non-plastic.

This data is sourced from the British Geological Survey.

Natural ground subsidence - Running sands

17.2 Running sands

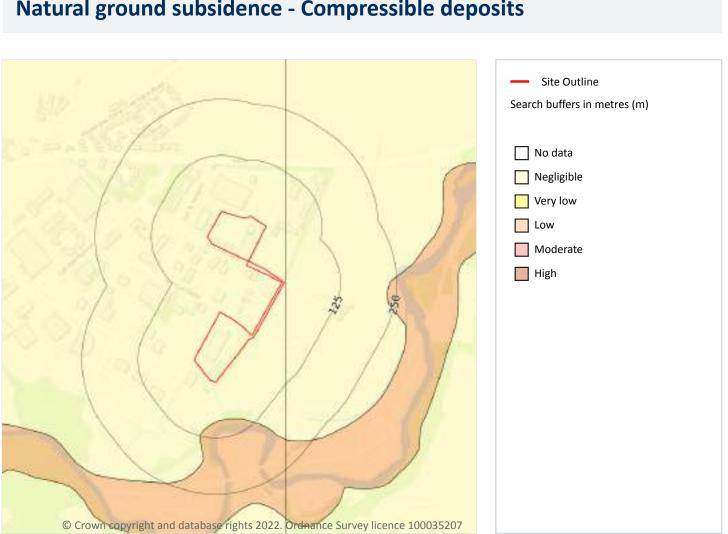
Records within 50m

The potential hazard presented by rocks that can contain loosely-packed sandy layers that can become fluidised by water flowing through them. Such sands can 'run', removing support from overlying buildings and causing potential damage.

Features are displayed on the Natural ground subsidence - Running sands map on page 104

© Crown copyright and database rights 2022. Ordnance Survey licence 100035207

Location	Hazard rating	Details
On site	Very low	Running sand conditions are unlikely. No identified constraints on land use due to running conditions unless water table rises rapidly.



Location	Hazard rating	Details
3m E	Very low	Running sand conditions are unlikely. No identified constraints on land use due to running conditions unless water table rises rapidly.

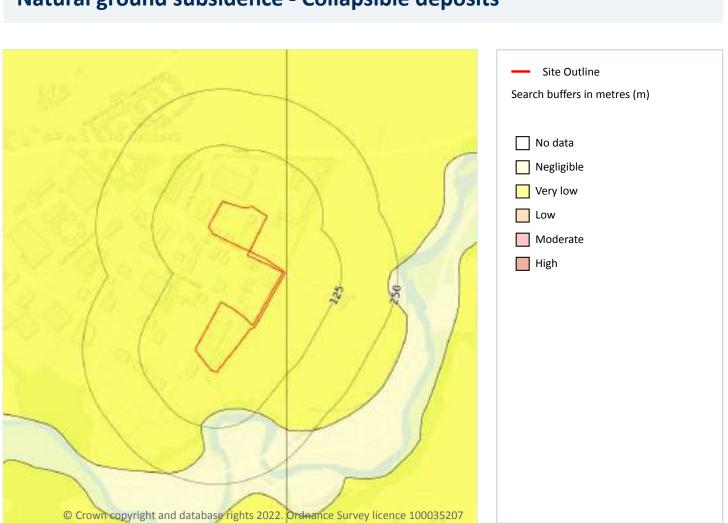
Natural ground subsidence - Compressible deposits

17.3 Compressible deposits

Records within 50m

The potential hazard presented by types of ground that may contain layers of very soft materials like clay or peat and may compress if loaded by overlying structures, or if the groundwater level changes, potentially resulting in depression of the ground and disturbance of foundations.

Features are displayed on the Natural ground subsidence - Compressible deposits map on page 106


Location	Hazard rating	Details
On site	Negligible	Compressible strata are not thought to occur.
3m E	Negligible	Compressible strata are not thought to occur.

This data is sourced from the British Geological Survey.

Natural ground subsidence - Collapsible deposits

17.4 Collapsible deposits

Records within 50m

The potential hazard presented by natural deposits that could collapse when a load (such as a building) is placed on them or they become saturated with water.

Features are displayed on the Natural ground subsidence - Collapsible deposits map on page 107

Location	Hazard rating	Details
On site	Very low	Deposits with potential to collapse when loaded and saturated are unlikely to be present.
3m E	Very low	Deposits with potential to collapse when loaded and saturated are unlikely to be present.

This data is sourced from the British Geological Survey.

Natural ground subsidence - Landslides

17.5 Landslides

Records within 50m

The potential for landsliding (slope instability) to be a hazard assessed using 1:50,000 scale digital maps of superficial and bedrock deposits, combined with information from the BGS National Landslide Database and scientific and engineering reports.

Features are displayed on the Natural ground subsidence - Landslides map on page 108

Location	Hazard rating	Details
On site	Very low	Slope instability problems are not likely to occur but consideration to potential problems of adjacent areas impacting on the site should always be considered.

Location	Hazard rating	Details
3m E	Very low	Slope instability problems are not likely to occur but consideration to potential problems of adjacent areas impacting on the site should always be considered.
48m SE	Low	Slope instability problems may be present or anticipated. Site investigation should consider specifically the slope stability of the site.

Natural ground subsidence - Ground dissolution of soluble rocks

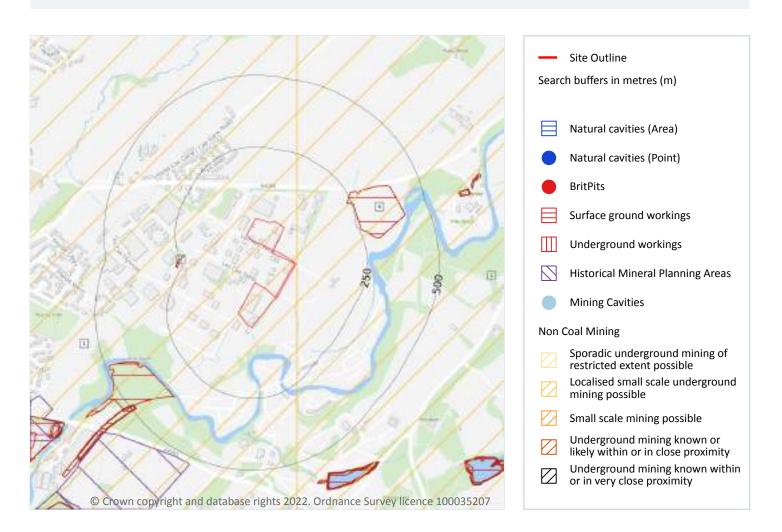
17.6 Ground dissolution of soluble rocks

Records within 50m

The potential hazard presented by ground dissolution, which occurs when water passing through soluble rocks produces underground cavities and cave systems. These cavities reduce support to the ground above and can cause localised collapse of the overlying rocks and deposits.

Features are displayed on the Natural ground subsidence - Ground dissolution of soluble rocks map on **page 110**

Location	Hazard rating	Details
On site	Negligible	Soluble rocks are either not thought to be present within the ground, or not prone to dissolution. Dissolution features are unlikely to be present.


Location	Hazard rating	Details
3m E	Negligible	Soluble rocks are either not thought to be present within the ground, or not prone to dissolution. Dissolution features are unlikely to be present.

This data is sourced from the British Geological Survey.

18 Mining, ground workings and natural cavities

18.1 Natural cavities

Records within 500m

Industry recognised national database of natural cavities. Sinkholes and caves are formed by the dissolution of soluble rock, such as chalk and limestone, gulls and fissures by cambering. Ground instability can result from movement of loose material contained within these cavities, often triggered by water.

This data is sourced from Stantec UK Ltd.

18.2 BritPits

Records within 500m

BritPits (an abbreviation of British Pits) is a database maintained by the British Geological Survey of currently active and closed surface and underground mineral workings. Details of major mineral handling sites, such as wharfs and rail depots are also held in the database.

This data is sourced from the British Geological Survey.

18.3 Surface ground workings

Records within 250m

Historical land uses identified from Ordnance Survey mapping that involved ground excavation at the surface. These features may or may not have been subsequently backfilled.

Features are displayed on the Mining, ground workings and natural cavities map on page 112

ID	Location	Land Use	Year of mapping	Mapping scale
3	233m W	Pond	1888	1:10560
4	236m E	Refuse Heap	1976	1:10000

This is data is sourced from Ordnance Survey/Groundsure.

18.4 Underground workings

Records within 1000m 0

Historical land uses identified from Ordnance Survey mapping that indicate the presence of underground workings e.g. mine shafts.

This is data is sourced from Ordnance Survey/Groundsure.

18.5 Historical Mineral Planning Areas

Records within 500m

Boundaries of mineral planning permissions for England and Wales. This data was collated between the 1940s (and retrospectively to the 1930s) and the mid 1980s. The data includes permitted, withdrawn and refused permissions.

This data is sourced from the British Geological Survey.

0

0

3

18.6 Non-coal mining

Records within 1000m

The potential for historical non-coal mining to have affected an area. The assessment is drawn from expert knowledge and literature in addition to the digital geological map of Britain. Mineral commodities may be divided into seven general categories - vein minerals, chalk, oil shale, building stone, bedded ores, evaporites and 'other' commodities (including ball clay, jet, black marble, graphite and chert).

Features are displayed on the Mining, ground workings and natural cavities map on page 112

ID	Location	Name	Commodity	Class	Likelihood
1	On site	Not available	Vein Mineral	В	Localised small scale underground mining may have occurred. Potential for difficult ground conditions are unlikely or localised and are at a level where they need not be considered
2	3m E	Not available	Vein Mineral	В	Localised small scale underground mining may have occurred. Potential for difficult ground conditions are unlikely or localised and are at a level where they need not be considered
-	904m N	Not available	Vein Mineral	В	Localised small scale underground mining may have occurred. Potential for difficult ground conditions are unlikely or localised and are at a level where they need not be considered

This data is sourced from the British Geological Survey.

18.7 Mining cavities

Records within 1000m 0

Industry recognised national database of mining cavities. Degraded mines may result in hazardous subsidence (crown holes). Climatic conditions and water escape can also trigger subsidence over mine entrances and workings.

This data is sourced from Stantec UK Ltd.

18.8 JPB mining areas

Records on site	0
Areas which could be affected by former coal and other mining. This data includes some mine plans	

unavailable to the Coal Authority.

This data is sourced from Johnson Poole and Bloomer.

18.9 Coal mining

Records on site

Areas which could be affected by past, current or future coal mining.

This data is sourced from the Coal Authority.

18.10 Brine areas

Records on site

The Cheshire Brine Compensation District indicates areas that may be affected by salt and brine extraction in Cheshire and where compensation would be available where damage from this mining has occurred. Damage from salt and brine mining can still occur outside this district, but no compensation will be available.

This data is sourced from the Cheshire Brine Subsidence Compensation Board.

18.11 Gypsum areas

Records on site

Generalised areas that may be affected by gypsum extraction.

This data is sourced from British Gypsum.

18.12 Tin mining

Records on site

Generalised areas that may be affected by historical tin mining.

This data is sourced from Groundsure.

18.13 Clay mining

Records on site	0
Generalised areas that may be affected by kaolin and ball clay extraction.	

This data is sourced from the Kaolin and Ball Clay Association (UK).

0

0

0

19 Radon

19.1 Radon

Records on site

Estimated percentage of dwellings exceeding the Radon Action Level. This data is the highest resolution radon dataset available for the UK and is produced to a 75m level of accuracy to allow for geological data accuracy and a 'residential property' buffer. The findings of this section should supersede any estimations derived from the Indicative Atlas of Radon in Great Britain. The data was derived from both geological assessments and long term measurements of radon in more than 479,000 households.

Features are displayed on the Radon map on page 116

Location	Estimated properties affected	Radon Protection Measures required
On site	Less than 1%	None**

This data is sourced from the British Geological Survey and Public Health England.

3

0

0

20 Soil chemistry

20.1 BGS Estimated Background Soil Chemistry

Records within 50m

The estimated values provide the likely background concentration of the potentially harmful elements Arsenic, Cadmium, Chromium, Lead and Nickel in topsoil. The values are estimated primarily from rural topsoil data collected at a sample density of approximately 1 per 2 km². In areas where rural soil samples are not available, estimation is based on stream sediment data collected from small streams at a sampling density of 1 per 2.5 km²; this is the case for most of Scotland, Wales and southern England. The stream sediment data are converted to soil-equivalent concentrations prior to the estimation.

Location	Arsenic	Bioaccessible Arsenic	Lead	Bioaccessible Lead	Cadmium	Chromium	Nickel
On site	25 - 35 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	40 - 60 mg/kg	15 - 30 mg/kg
On site	25 - 35 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	40 - 60 mg/kg	15 - 30 mg/kg
3m NE	25 - 35 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	40 - 60 mg/kg	15 - 30 mg/kg

This data is sourced from the British Geological Survey.

20.2 BGS Estimated Urban Soil Chemistry

Records within 50m

Estimated topsoil chemistry of Arsenic, Cadmium, Chromium, Copper, Nickel, Lead, Tin and Zinc and bioaccessible Arsenic and Lead in 23 urban centres across Great Britain. These estimates are derived from interpolation of the measured urban topsoil data referred to above and provide information across each city between the measured sample locations (4 per km²).

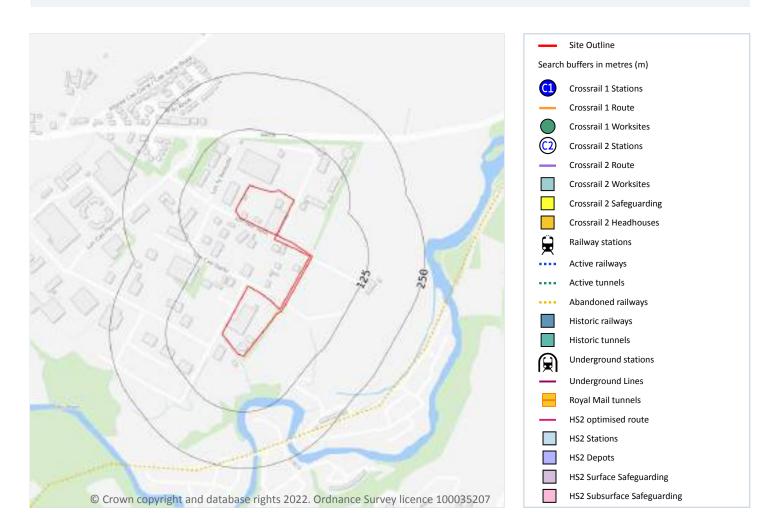
This data is sourced from the British Geological Survey.

20.3 BGS Measured Urban Soil Chemistry

Records within 50m

The locations and measured total concentrations (mg/kg) of Arsenic, Cadmium, Chromium, Copper, Nickel, Lead, Tin and Zinc in urban topsoil samples from 23 urban centres across Great Britain. These are collected at a sample density of 4 per km².

This data is sourced from the British Geological Survey.



Contact us with any questions at: info@groundsure.com 08444 159 000

21.1 Underground railways (London)

Records within 250m

Details of all active London Underground lines, including approximate tunnel roof depth and operational hours.

This data is sourced from publicly available information by Groundsure.

21.2 Underground railways (Non-London)

Records within 250m

Details of the Merseyrail system, the Tyne and Wear Metro and the Glasgow Subway. Not all parts of all systems are located underground. The data contains location information only and does not include a depth assessment.

0

This data is sourced from publicly available information by Groundsure.

21.3 Railway tunnels

Records within 250m

Railway tunnels taken from contemporary Ordnance Survey mapping.

This data is sourced from the Ordnance Survey.

21.4 Historical railway and tunnel features

Records within 250m

Railways and tunnels digitised from historical Ordnance Survey mapping as scales of 1:1,250, 1:2,500, 1:10,000 and 1:10,560.

This data is sourced from Ordnance Survey/Groundsure.

21.5 Royal Mail tunnels

Records within 250m

The Post Office Railway, otherwise known as the Mail Rail, is an underground railway running through Central London from Paddington Head District Sorting Office to Whitechapel Eastern Head Sorting Office. The line is 10.5km long. The data includes details of the full extent of the tunnels, the depth of the tunnel, and the depth to track level.

This data is sourced from Groundsure/the Postal Museum.

21.6 Historical railways

Records within 250m

Former railway lines, including dismantled lines, abandoned lines, disused lines, historic railways and razed lines.

Features are displayed on the Railway infrastructure and projects map on page 118

Location	Description	
210m S	Abandoned	

This data is sourced from OpenStreetMap.

0

0

0

21.7 Railways

Records within 250m

Currently existing railway lines, including standard railways, narrow gauge, funicular, trams and light railways. This data is sourced from Ordnance Survey and OpenStreetMap.

21.8 Crossrail 1

Records within 500m

The Crossrail railway project links 41 stations over 100 kilometres from Reading and Heathrow in the west, through underground sections in central London, to Shenfield and Abbey Wood in the east.

This data is sourced from publicly available information by Groundsure.

21.9 Crossrail 2

Records within 500m

Crossrail 2 is a proposed railway linking the national rail networks in Surrey and Hertfordshire via an underground tunnel through London.

This data is sourced from publicly available information by Groundsure.

21.10 HS2

Records within 500m

HS2 is a proposed high speed rail network running from London to Manchester and Leeds via Birmingham. Main civils construction on Phase 1 (London to Birmingham) of the project began in 2019, and it is currently anticipated that this phase will be fully operational by 2026. Construction on Phase 2a (Birmingham to Crewe) is anticipated to commence in 2021, with the service fully operational by 2027. Construction on Phase 2b (Crewe to Manchester and Birmingham to Leeds) is scheduled to begin in 2023 and be operational by 2033.

This data is sourced from HS2 ltd.

0

0

0

Data providers

Groundsure works with respected data providers to bring you the most relevant and accurate information. To find out who they are and their areas of expertise see <u>https://www.groundsure.com/sources-reference</u>.

Terms and conditions

Groundsure's Terms and Conditions can be accessed at this link: <u>https://www.groundsure.com/terms-and-conditions-jan-2020/</u>.

APPENDIX 6 - CIRIA Risk Assessment Methodology

GWYNEDD SKIPS GEO-ENVIRONMENTAL APPRAISAL GRO-22013-3516

Contaminated Land Risk Assessment

Contaminated Land Risk Assessment is a technique that identifies and considers the associated risk, determines whether the risks are significant and whether action needs to be taken. The four main stages of risk assessment are:

Hazard Identification

Hazard Assessment

Risk Estimation 🗁 Risk Evaluation

LCRM outlines the framework to be followed for risk assessment in the UK. The framework is designed to be consistent with UK legislation and policies including planning. The starting point of the risk assessment is to identify the context of the problem and the objectives of the process.

Formulating and developing a conceptual model for the site is an important requirement of risk assessment, this supports the identification and assessment of pollutant linkages. Development of the conceptual model forms the main part of preliminary risk assessment, and the model is subsequently refined or revised as more information and understanding is obtained through the risk assessment process.

Risk is a combination of the likelihood of an event occurring and the magnitude of its consequences. Therefore, both the likelihood and the consequences of an event must be taken into account when assessing risk.

The risk assessment process needs to take into account the degree of confidence required in decisions. Identification of uncertainties is an essential step in risk assessment.

The likelihood of an event is classified on a four-point system using the following terms and definitions from CIRIA C552:

- High likelihood: There is a pollution linkage and an event appears very likely in the short term and almost inevitable over the long term, or there is evidence at the receptor of harm or pollution;
- Likely: There is a pollution linkage and all the elements are present and in the right place, which means it is probable that an event will occur. Circumstances are such that the event is not inevitable, but possible in the short term and likely over the long term;
- Low likelihood: There is a pollution linkage and circumstances are possible under which an event could occur. However, it is by no means certain even over a longer period such event would take place, and is less likely in the short term;
- Unlikely: There is a pollution linkage but circumstances are such that it is improbable the event would occur even in the long term.

The severity is also classified using a system based on CIRIA C552. The terms and definitions are:

Severe: Short term (acute) risk to human health likely to result in 'significant harm' as defined by the Environment Protection Act 1990, Part IIA. Short-term risk of pollution of sensitive water resources. Catastrophic damage to buildings or property. A short-term risk to a particular ecosystem or organism forming part of that ecosystem (note definition of ecosystem in 'Draft Circular on Contaminated Land', DETR 2000);

Examples – High concentrations of contaminant on surface of recreation area, major spillage of contaminants from site into controlled waters, explosion causing building to collapse;

- Medium: Chronic damage to human health ('significant harm' as defined in DETR 2000). Pollution of sensitive water resources. A significant change in a particular ecosystem or organism forming part of that ecosystem (note definition of ecosystem in 'Draft Circular on Contaminated Land', DETR 2000); Examples Concentrations of contaminants exceed the generic assessment criteria, leaching of contaminants from a site to a Principal or Secondary Aquifer, death of species within a designated nature reserve;
- Mild: Pollution of non-sensitive water resources. Significant damage to crops, buildings, structures and services ('significant harm' as defined in 'Draft Circular on Contaminated Land', DETR 2000). Damage to sensitive buildings, structures, services or the environment;
 Examples Pollution of non-classified groundwater or damage to buildings rendering it unsafe to occupy.
- Minor: harm, not necessarily significant harm, which may result in financial loss or expenditure to resolve. Non-permanent health effects to human health (easily prevented by use of personal protective clothing etc). Easily repairable effects of damage to buildings, structures and services. Examples – Presence of contaminants at such concentrations PPE is required during site work, loss of plants in landscaping scheme or discolouration of concrete.

Once the likelihood and severity have been determined, a risk category can be assigned using the table below.

			Conse	equences	
		Severe	Medium	Mild	Minor
	Highly likely	Very high	High	Moderate	Moderate/low
Probability	Likely	High	Moderate	Moderate/low	Low
	Low likelihood	Moderate	Moderate/low	Low	Very low
	Unlikely	Moderate/low	Low	Very Low	Very low

Definitions of the risk categories obtained from the above table are as follows together with an assessment of the further work that might be required:

- Very high: There is a high probability that severe harm could arise to a designated receptor from an identified hazard or there is evidence that severe harm is currently happening. This risk, if realised, could result in substantial liability. Urgent investigation and remediation are likely to be required;
- **High**: Harm is likely to arise to a designated receptor from an identified hazard. Realisation of the risk is likely to present a substantial liability. Urgent investigation is required and remedial works may be necessary in the short term and are likely over the longer term;
- **Moderate**: It is possible that harm could arise to a designated receptor from an identified hazard. However, it is either relatively unlikely that any such harm would be severe, or if any harm were to occur it would be more likely to be relatively mild. Investigation is normally required to clarify the risk and determine the liability. Some remedial works may be required in the longer term;
- Low: It is possible that harm could arise to a designated receptor from an identified hazard, but it is likely that this harm, if realised, would at worst normally be mild;
- Very Low: There is a low possibility that harm could arise to a receptor. In the event of such harm being realised, it is not likely to be severe.

APPENDIX 7 - Exploratory Hole Logs

GWYNEDD SKIPS GEO-ENVIRONMENTAL APPRAISAL GRO-22013-3516

	0						_		Borehole N	Nc
GRC		СН				Bo	reho	ole Log	CP01	I
JAC	CONSULTING	СП						•	Sheet 1 of	
jec	t Name:	GWYNED	D SKIF		roject No. RO-22013		Co-ords:	-	Hole Typ CP	е
catio	on:	CAERNAF	REON				Level:		Scale	
									1:50 Logged E	3.
ent:		GWYNED	D SKIF	P & PLANT HIRE			Dates:	18/03/2022 - 18/03/2022	AW	- ,
əll	Water Strikes	-	1	In Situ Testing	Depth	Level	Legend	Stratum Descriptior	1	
	Surkes	Depth (m)	Туре	Results	(m)	(m)		MADE GROUND: Dark grey fine to	coarse	_
								angular to subangular gravel of slat	e.	
		0.50 0.50	D ES		0.50			MADE GROUND: Grey fine to coar subangular gravel of slate.	se angular to	-
Ø		1.00	D		1.00					
		1.00 1.20	ES	N=50 (25 for				MADE GROUND: Blue fine to coars to coarse angular to subangular gra		
		1.50	D	25mm/50 for 50mm)	1.50			Firm to stiff brown slightly sandy gra	avelly CLAY.	-
H		1.50	ES					Gravel is subangular to subrounded coarse of mixed lithologies includin	l fine to g mudstone.	
Ø		2.00 2.00	D ES							
		2.00		N=16 (3,3/3,4,4,5)						
Ø		3.00	D							
Ø										
		4.00	D							
Ø		4.00		N=21 (4,4/5,5,6,5)						
Ø										
		5.00			5.00					
		5.00	D		5.00			End of borehole at 5.00 m		•
mai Loca mina	ation cle	eared using ha	and he	ld CAT. 2. Hand pit tion. 5. Hole backfil	dug to 1.2r	n bgl. 3. N sings	No groundw	vater encountered. 4. Location	C	

	6					Bo	reho	ole Log	Borehole CP02	
GRO	UNDTE(СН							Sheet 1 c	
oject	ject Name: GWYNEDD SKIPS cation: CAERNARFON ent: GWYNEDD SKIP & PLANT HIRE				Project No. GRO-22013		Co-ords:	-	Hole Typ CP	ce
catio	n:	CAERNAF	RFON	I			Level:		Scale 1:50	
ent:		GWYNED	D SKIF	P & PLANT HIRE			Dates:	15/03/2022 - 15/03/2022	Logged I AW	By
	Water		s and	In Situ Testing	Depth	Level	Legend	Stratum Descriptior		Τ
	Strikes	Depth (m)	Туре	Results	(m)	(m)				
								MADE GROUND: Dark grey fine to angular to subangular gravel of slat	coarse e.	
		0.50 0.50	D ES		0.50			Firm brown slightly sandy slightly g with low cobble content. Gravel is s		
		1.00	D					subrounded medium to coarse of m lithologies including mudstone.		
		1.00 1.20	ES	N=16 (5,4/3,4,4,5)				0 0		
		1.50	D							
		1.50	ES							
		2.00 2.00	D ES					Becoming stiff from 2.0m bgl.		
		2.00		N=50 (25 for 75mm/50 for 75mm)						
		2.00 - 2.45	υ	75mm/50 lor 75mm)						
		2.00								
		3.00 3.00	D	N=49 (4,5/7,7,10,25)						
		3.00 - 3.45	В							
		4.00	D							
		4.00		N=39 (4,3/7,10,10,12)						
		4.00 - 4.45	В	(1,0,1,10,10,12)						
		5.00 5.00	D	N=50 (25 for						
		5.00		10mm/50 for 16mm)						
					5.50			End of borehole at 5.50 m		-
										1
mark		ared using b	and bo	Id CAT 2 Hand ait a	ua to 1.2r	n hal 2 M		ater encountered. 4. Location		>
-uud mina		area asiriy na a to boulder o	anu 110 hetruc	tion. 5. Hole backfille	ay io 1.20 ad with aria	n byl. J. P Dingo		aler encountered. 4. LOCation		

GROL		CH				Bo	reho	ole Log	Borehole N CP03 Sheet 1 of	3
roject	Name:	GWYNED	D SKIF		roject No. RO-22013		Co-ords:	-	Hole Typ CP	е
ocatior	n:	CAERNAF	RFON				Level:		Scale 1:50	
lient:		GWYNED	D SKIF	⁹ & PLANT HIRE			Dates:	14/03/2022 - 14/03/2022	Logged B AW	Зу
	Water Strikes			n Situ Testing	Depth (m)	Level (m)	Legend	Stratum Description		
	JUIKES	Depth (m)	Туре	Results	(11)	(11)		MADE GROUND: Dark grey fine to angular to subangular gravel of slate	coarse	+
		0.50 0.50	D ES		0.50			MADE GROUND: Dark brown sand angular fine to coarse gravel of slate	y clayey	_
		1.00 1.20 1.20 1.50	ES D ES	N=11 (2,2/2,2,3,4)	1.00			Firm brown slightly sandy gravelly C is angular to subrounded fine to coa lithologies including mudstone.	CLAY. Gravel arse of mixed	
		2.00 2.00 2.00	D D	N=19 (2,2/4,5,5,5)						
		3.00 3.00 3.00 - 3.45 3.50	D U D	N=50 (25 for 75mm/50 for 75mm)				Becoming stiff from 3.0m bgl.		
		4.00 4.00 4.00 4.00	D D B	50 (25 for 75mm/50 for 75mm)						
		5.00 5.00 5.00 - 5.45 5.50	D D U	N=50 (25 for 75mm/50 for 75mm)	5.50			End of borehole at 5.50 m		
										1
mark		orod using b						vater encountered. 4. Location		<u> </u>

ि								Borehole No	
GROUND	TECH				RO	renc	ole Log	CP04 Sheet 1 of	
oject Nar	ne: GWYNED	D SKI		oject No.		Co-ords:	-	Hole Type	
ocation:	CAERNA		Gł	RO-22013		Level:		CP Scale	
								1:50 Logged By	v
lient:			P & PLANT HIRE			Dates:	17/03/2022 - 17/03/2022	AW	,
Vell Wat Strik	•.	s and Type	In Situ Testing Results	Depth (m)	Level (m)	Legend	Stratum Description		
	0.50 1.00 1.20 1.50	ES ES ES	N=16 (1,3/4,4,5,3)	0.20			MADE GROUND: Tarmac. MADE GROUND: Grey brown sand gravel of slate. Sand is fine to coars	y clayey e.	
	2.00 2.00 2.50 - 3.00	DB	N=30 (4,4/5,5,7,13)	2.00			Firm brown slightly sandy gravelly C cobble content of mudstone. Gravel subrounded fine to coarse of mixed including mudstone and siltstone.	is angular to	
	3.00		N=50 (25 for 75mm/50 for 127mm)	3.00			End of borehole at 3.00 m		
									1

GROUNDTE	ECH				Во	reho	ole Log	Borehole N CP05 Sheet 1 of	
Project Name	: GWYNED	D SKIF		roject No. RO-22013		Co-ords:	-	Hole Type CP	3
ocation:	CAERNA	RFON				Level:		Scale 1:50	
ient:	GWYNED	D SKIF	P & PLANT HIRE			Dates:	17/03/2022 - 17/03/2022	Logged By AW	y
/ell Water	-	s and	In Situ Testing	Depth	Level	Legend	Stratum Descriptior		
Strikes	Depth (m)	Туре	Results	(m)	(m)	- Logond	MADE GROUND: Tarmac.	·	
	0.50 0.50 1.00	D ES D		0.20			MADE GROUND: Red brown slight angular to subangular fine to coarse mixed lithologies including brick.	ly sandy e gravel of	
	1.00 1.20 1.30 1.50	ES D ES	N=16 (2,4/4,3,5,4)				Becoming clayey from 1.6m bgl.		
	2.00 2.00 2.00 - 2.25 2.50 - 3.00	D B B	N=29 (3,4/6,6,8,9)	2.30			Firm brown slightly sandy slightly gr with high cobble content and occas boulders. Gravel is subangular to ro coarse of mixed lithologies.	ional	-
	3.00		N=50 (25 for 50mm/50 for 70mm)	3.00		<u> </u>	End of borehole at 3.00 m		
									1
							vater encountered. 4. Location (1.0m plain, 2.0m slotted.).	6	

GRO		СH				Bo	reho	ole Log	Borehole I WS0 ⁴ Sheet 1 o	1
ojec	t Name	GWYNED	D SKIF		Project No. GRO-22013		Co-ords:	-	Hole Typ WS	e
cati	on:	CAERNAF	RFON				Level:		Scale 1:25	
ent	:	GWYNED	D SKIF	% PLANT HIRE			Dates:	15/03/2022 -	Logged E AW	Зу
ell	Water Strikes		1	n Situ Testing	Depth (m)	Level (m)	Legend	Stratum Descriptior	1	
X	Ounces	Depth (m)	Туре	Results		(11)		MADE GROUND: Concrete.		+
		0.20	ES		0.10			Firm brown slightly sandy gravelly (fine to coarse. Gravel is angular to fine to coarse of slate.	CLAY. Sand is subangular	
X		0.40	D							
		0.70	ES		0.55			Firm dark brown slightly silty CLAY moderate cobble content of mixed l including mudstone.		
		1.20		N=50 (5,5/50 for 255mm)						
		1.50	D		1.60		<u>x°~°~</u>	End of borehole at 1.60 m		
ema Loc rmin	ation cle	eared using ha	and he	ld CAT. 2. Hand p tion. 5. Hole backt	it dug to 1.2n	n bgl. 3. N sings.	lo groundw	vater encountered. 4. Location		

GRC		СН				Bo	reho	ole Log	Borehole N WS02 Sheet 1 of	2
rojec	t Name:	GWYNED	D SKIP		roject No. RO-22013		Co-ords:	-	Hole Type WS	е
ocati	on:	CAERNAF	RFON				Level:		Scale 1:25	
ient:		GWYNED	D SKIF	& PLANT HIRE			Dates:	15/03/2022 -	Logged B AW	3y
/ell	Water		s and I	n Situ Testing	Depth	Level	Legend	Stratum Descriptior		Τ
	Strikes	Depth (m)	Туре	Results	(m)	(m)	Legend	-	I	
		0.20 0.50 0.70	ES ES D		0.10			MADE GROUND: Concrete. Firm brown slightly sandy gravelly 0 fine to coarse. Gravel is angular to fine to coarse. Becoming sandy at 0.6m bgl.		
		1.20		N=8 (3,2/2,2,2,2)	1.10			Firm brown sandy CLAY with mode content of mudstone and quartzite. to coarse.	rate cobble Sand is fine	
		1.50	D	N=14 (2,3/3,3,4,4)	2.00			Firm dark brown to grey silty CLAY.		-
		2.30	D							
		2.80 3.00	D	N=9 (2,2/2,2,2,3)						
					3.55			End of borehole at 3.55 m		-

	0								Borehole N	10
GRC		СН				Bo	reho	ole Log	WS03	
	CONSULTING			D				-	Sheet 1 of	
ojec	t Name:	GWYNED	D SKI		roject No. RO-22013		Co-ords:	-	Hole Type WS	9
catio	on:	CAERNAF	RFON				Level:		Scale 1:25	
ent:		GWYNED	D SKI	P & PLANT HIRE			Dates:	15/03/2022 -	Logged B AW	y
ell	Water		s and	In Situ Testing	Depth	Level	Logond	Stratum Description		Т
	Strikes	Depth (m)	Туре	Results	(m)	(m)	Legend	Stratum Description		
		0.20	ES		0.30			MADE GROUND: Grass over brown slightly gravelly topsoil. Sand is fine Gravel is angular to subangular fine slate. MADE GROUND: Grey and blue an subangular fine to coarse gravel of st	to coarse. to coarse of gular to	
		0.50	ES		0.60					
		0.70	D					Firm dark brown sandy slightly silty is fine to coarse.		
		1.20		N=14 (3,3/4,3,3,4)	0.90			Firm dark brown very sandy slightly with moderate cobble content of mix lithologies including mudstone.		-
		1.70 1.70	D	50 (25 for 105mm/50 for 0mm)	1.80			Ēnd of borehole at 1.80 m		8
emai Loca min	ation cle	eared using ha	and he	ld CAT. 2. Hand pit tion. 5. Hole backfil	dug to 1.2r	m bgl. 3. N sinas.	lo groundw	vater encountered. 4. Location	6	

GROUNDTE	СН				Bo	reho	ole Log	Borehole No WS04 Sheet 1 of 2	•
roject Name:	GWYNED	D SKIF		roject No. RO-22013		Co-ords:	-	Hole Type WS	;
ocation:	CAERNA	RFON	-			Level:		Scale 1:25	
lient:	GWYNED	D SKIF	% PLANT HIRE			Dates:	17/03/2022 -	Logged By AW	/
Nell Water		1 1	n Situ Testing	Depth	Level	Legend	Stratum Descriptio	n	
Strikes	Depth (m)	Туре	Results	(m)	(m)		MADE GROUND: Dark grey angul	ar to	
. K. a	0.20	ES					subangular fine to coarse gravel o	f slate.	
				0.40				gular to out	
							MADE GROUND: Brown sandy ar angular fine to coarse gravel. Sand coarse.		
				0.70			Firm dark brown gravelly CLAY. Gr	avel is	
	0.80	ES					angular to subangular fine to coars lithologies including slate.	se of mixed	
	1.20		N=7 (2,2/1,2,2,2)						
	1.50	D							
				1.90			Firm brown gravelly CLAY. Gravel	is angular to	
	2.00		N=7 (1,2/1,2,2,2)				subangular fine to coarse of slate.	Ū į	
	2.50	D		2.50			Firm dark brown CLAY.		
	3.00		N=11 (0.2/2.0.2.2)						
	3.00		N=11 (2,3/3,2,3,3)						
				4.00					
							End of borehole at 4.00 n	n	
marks Location cle		1		1	I				_

GRO		сн				Bo	reho	ble Log	Borehole N	
	ONSULTING	CIT		C	Project No.				Sheet 1 of Hole Type	
ect	Name:	GWYNED	D SKIF		SRO-22013		Co-ords:	-	WS	е
atio	n:	CAERNAF	RFON				Level:		Scale 1:25	
nt:		GWYNED	D SKIF	% PLANT HIRE			Dates:	17/03/2022 -	Logged B	Зy
-				n Situ Testing					AW	Т
	Water Strikes	Depth (m)	Туре	Results	Depth (m)	Level (m)	Legend	Stratum Descriptior	1	
		0.20	ES		0.40			MADE GROUND: Brown sandy gra Sand is fine to coarse. Gravel is an subangular fine to coarse of slate. Firm light brown to brown sandy gra Sand is fine to coarse. Gravel is an subangular fine to coarse of slate.	gular to	
		1.00	D		0.80			Firm dark brown grey silty CLAY wi cobble content of mudstone.	th moderate	-
		1.20		N=15 (2,3/3,3,4,5)						
		2.00 2.00	D	N=25 (5,6/4,5,6,10)			४त्र ४त्र ४त्र ४त्र ४५ ४५ १४ ५४ ४ ४ ४५ ४५ १४ १४			
		2.50		N=50 (25 for 115mm/50 for 200mm)	2.50		<u>×<u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	End of borehole at 2.50 m		-
narl oca		ared using h	and he	ld CAT. 2. Hand pit	due to 1 2m	- h h - h - h				

GROUNDTE CONSULTING	ECH				Bo	reho	ole Log	Borehole N WS06 Sheet 1 of	5 f 1
oject Name	: GWYNED			oject No. RO-22013		Co-ords: Level:	-	Hole Typ WS Scale 1:25	e
ent:	GWYNED	D SKIF	% PLANT HIRE			Dates:	17/03/2022 -	Logged B AW	3y
ell Water Strikes		1 1	n Situ Testing	Depth	Level	Legend	Stratum Description		Τ
	Depth (m) 0.20	Type ES	Results	(m)	(m)		MADE GROUND: Blue and black subangular fine to coarse gravel of	angular to of slate.	
	0.60	ES		0.40			MADE GROUND: Brown to red so gravel including brick.	andy clayey	-
	1.00	D		0.90			Firm brown CLAY with moderate of mudstone.	cobble content	_
	1.20		N=14 (2,2/2,3,6,3)						
	2.00 2.00	D	N=50 (4,7/50 for 200mm)	2.20			Ēnd of borehole at 2.20		

G								Borehole N	lo.
GROUNDTE	СН				Bo	reho	ole Log	WS07	
CONSULTING			1	Project No.				Sheet 1 of Hole Type	
Project Name:	GWYNED	D SKIF		GRO-22013		Co-ords:	-	WS	C
Location:	CAERNAF	RFON				Level:		Scale 1:25	
Client:			P & PLANT HIRE			Dates:	17/03/2022 -	Logged B	y
						Dates.	17/05/2022 -	AW	
Well Water Strikes	Depth (m)	Type	In Situ Testing Results	Depth (m)	Level (m)	Legend	Stratum Description	ı	
	0.20 1.20 1.70 1.70	D	N=29 (6,6/9,6,7,7) N=50 (9,11/50 for 170mm)	1.70			MADE GROUND: Black sandy grav with rootlets. Sand is fine to coarse angular to sub angular fine to coarse Firm light brown fine to coarse sand moderate cobble content.	. Gravel is e of slate. dy CLAY with	

G					Bo	reho	ole Log	Borehole N	
	ECH							Sheet 1 of	f 1
oject Name	: GWYNED	D SKIF		roject No.		Co-ords:	-	Hole Typ	e
4:			6	RO-22013		1		WS Scale	
cation:	CAERNAF	REON				Level:		1:25	
ient:	GWYNED	D SKIF	P & PLANT HIRE			Dates:	17/03/2022 -	Logged B AW	Зу
, " Water	Sample	s and I	n Situ Testing	Depth	Level	1		1	Τ
Strikes	Depth (m)	Туре	Results	(m)	(m)	Legend	Stratum Description		
	0.20	ES		0.40			MADE GROUND: Black sandy gr. Sand is fine to coarse. Gravel is a subangular fine to coarse of slate Firm brown to dark brown slightly	ngular to silty CLAY with	_
	0.60	ES					moderate cobble content of mixed including mudstone.	l lithologies	
	1.00	D				× <u>×</u> ×			
	1.20		N=22 (3,4/5,4,6,7)	1.10			Firm brown sandy slightly silty CL moderate cobble content. Sand is	AY with fine to coarse.	
	1.90 2.00	D	N=39 (9,11/14,12,5,8)	2.35			End of borehole at 2.35	m	
	1			1					

GROU		СН				Bo	reho	ole Log	WS09 Sheet 1 of	
roject	Name:	GWYNED	D SKIF		roject No. RO-22013		Co-ords:	-	Hole Typ WS	
ocatio	n.	CAERNAF	REON		RU-22013		Level:		Scale	
									1:25 Logged B	3y
ient:				P & PLANT HIRE	1 1		Dates:	15/03/2022 -	AW	- —
	Water Strikes	Samples Depth (m)	s and I Type	n Situ Testing Results	Depth (m)	Level (m)	Legend	Stratum Description		
		Bopin (m)	Type	rtoouto	0.10			MADE GROUND: Concrete.		╞
		0.20	ES		0.10			Firm brown slightly sandy gravelly C fine to coarse. Gravel is angular to s fine to coarse of mixed lithologies.	LAY. Sand is subangular	
					0.40			Firm brown grey sandy CLAY. Sand	is fine to	-
		0.50 0.60	D ES					coarse.		
		1.20		N=10 (4,3/3,2,3,2)	1.10			Firm brown to dark brown sandy CL moderate cobble content. Sand is fir	AY with	-
		1.50	D							
					1.60			Firm dark brown CLAY with moderate	te cobble	-
								content.		
		0.00		N 44 (0 0/0 0 0 0 0)						
		2.00		N=11 (2,2/2,3,3,3)						
		2.50	D							
		3.00		N=14 (2,3/3,4,3,4)						
					3.80					
					0.00			End of borehole at 3.80 m		
mark										
_oca ndpij	tion cle	ared using ha	and he	ld CAT. 2. Hand pit	dua to 1.2m	hal 3 N	lo aroundw	ater encountered. 4. Monitoring		

GROUNDTECH					Borehole No. WS10 Sheet 1 of 1					
roject	Name:	GWYNED	D SKIF		roject No. RO-22013		Co-ords:	-	Hole Type WS	е
cation: CAERNARFON							Level:		Scale 1:25	
ient:		GWYNED	D SKIF	P & PLANT HIRE			Dates:	15/03/2022 -	Logged B AW	y
	Water	Samples	s and I	n Situ Testing	Depth	Level	Logond	Stratum Deparintion		Τ
	Strikes	Depth (m)	Туре	Results	(m)	(m)	Legend	Stratum Description MADE GROUND: Concrete.		
								MADE GROUND: Concrete.		
		0.50	ES		0.25			Firm brown slightly sandy gravelly C fine to coarse. Gravel is angular to s fine to coarse of mixed lithologies.	LAY. Sand is subangular	
					0.60			Firm dark brown gravelly CLAY. Gra angular to subangular fine to coarse	vel is of slate.	-
		1.00	D							
		1.20		N=11 (3,4/3,2,3,3)						
		1.80 1.80	D	N=50 (11,9/50 for 85mm)	1.80			End of borehole at 1.80 m		-
mar _oca	ation cle	eared using ha	and he	ld CAT. 2. Hand pit tion. 5. Hole backfil	dug to 1.2n	n bgl. 3. N	o groundw	vater encountered. 4. Location	6	

GROUNDTECH						Bo	reho	ole Log	Borehole N WS11 Sheet 1 or	1 f 1
roject Name: GWYNEDD SKIPS				Project No. GRO-22013		Co-ords:	-	Hole Typ WS Scale	e	
ocation: CAERNARFON					Level:		1:25			
ent:		GWYNED	D SKIF	& PLANT HIRE			Dates:	15/03/2022 -	Logged E AW	3y
/ell	Water Strikes	Samples Depth (m)	s and I Type	n Situ Testing Results	Depth (m)	Level (m)	Legend	Stratum Description		
		0.20	ES		0.10			MADE GROUND: Concrete. Firm brown slightly sandy gravelly C fine to coarse. Gravel is angular to s fine to coarse of mixed lithologies. Firm dark brown sandy slightly silty	subangular	-
		0.50 0.60	D ES		1.00			is fine to coarse.		
		1.20	D	N=50 (2,3/50 for 235mm)				Firm brown sandy CLAY with low co of gabbro and mudstone. Sand is fir End of borehole at 1.50 m		
mai _oc: min	ation cle	eared using ha	and hel	d CAT. 2. Hand p ion. 5. Hole back	it dug to 1.2n	n bgl. 3. N	lo groundw	vater encountered. 4. Location	6	

					Borehole No WS12 Sheet 1 of				
				roject No. RO-22013		Co-ords:	-	Hole Type WS	е
cation:	CAERNAF	I.			Level:		Scale 1:25		
ent:	GWYNED	D SKIF	& PLANT HIRE			Dates:	15/03/2022 -	Logged B AW	y
/ell Water	Samples	s and I	n Situ Testing	Depth	Level		Otestine Description		Γ
ell Strikes	Depth (m)	Туре	Results	(m)	(m)	Legend	Stratum Description	1	
	0.20 0.60 0.70 1.20 1.60	ES D	N=8 (2,2/2,2,2,2)	0.10			MADE GROUND: Concrete. Firm brown slightly sandy gravelly of fine to coarse. Gravel is angular to fine to coarse of slate. Firm brown to dark brown slightly s moderate cobble content of mixed including mudstone.	subangular	
	2.00 2.50	D	N=11 (2,2/3,2,3,3)	1.90			Firm dark brown to grey silty CLAY.		
	3.00		N=11 (2,2/3,3,2,3)	4.00			End of borehole at 4.00 m		

GROUNDTE			Borehole No WS13						
CONSULTING			Pr	oject No.		reho	Sheet 1 of Hole Type		
Project Name: GWYNEDD SKIPS				RO-22013		Co-ords:	-	WS Scale	
ocation: CAERNARFON						Level:		1:25	
lient:	GWYNED	D SKIF	% PLANT HIRE			Dates:	16/03/2022 -	Logged By AW	у
Vell Water		s and I	n Situ Testing	Depth	Level	Legend	Stratum Descriptior	, ,	
Strikes		Туре	Results	(m)	(m)	5	MADE GROUND: Grey black angu subangular fine to coarse gravel of brick.	lar to	
	0.50	ES		0.80			Firm dark brown CLAY with modera and low boulder content.	ate cobble	-
	1.00	D	N=9 (1,2/2,3,2,2)						
	2.00 2.00	D	N=50 (5,7/50 for	1.60		54 64 64 64 61 6 56 66 64 64 61 6 6 86 86 86 84 61 8 81 81 81 81 81 91	Firm to stiff dark brown mottled gre CLAY with moderate cobble conten	y slightly silty it.	-
			255mm)	2.30		×	End of borehole at 2.30 m		

GROUNDTECH						ole Log	Borehole N WS14 Sheet 1 of			
			Project No. GRO-22013		Co-ords:	-	Hole Type WS Scale	e		
lient:				% PLANT HIRE			Dates:	16/03/2022 -	1:25 Logged B	By
,	Water	Samples	s and l	n Situ Testing	Depth	Level			AW	Τ
	Strikes	Depth (m)	Туре	Results	(m)	(m)	Legend	Stratum Descriptio	n	
		0.20 0.20	D ES		0.10			MADE GROUND: Concrete. MADE GROUND: Black angular to fine to coarse gravel of slate.	subangular	
					0.35			MADE GROUND: Black red angula subangular gravel of slate and bric	ar to k.	
					1.00			End of borehole at 1.00 n		-
mark										

GROUNDTECH						Bo	reho	ole Log	Borehole N WS1 Sheet 1 or	5 f 1
Project Name: GWYNEDD SKIPS				Project No. GRO-22013		Co-ords:	Hole Typ WS	e		
ocation: CAERNARFON							Level:		Scale 1:25	
ent:		GWYNED	D SKIF	P & PLANT HIRE			Dates:	16/03/2022 -	Logged E AW	Зу
/ell	Water Strikes	-	-	In Situ Testing	Depth	Level	Legend	Stratum Description	n	
	Suikes	Depth (m)	Туре	Results	(m)	(m)		MADE GROUND: Concrete.		+
		0.20	ES		0.15 0.30			MADE GROUND: Blue angular to s fine to coarse of slate. MADE GROUND: Black red angula subangular fine to coarse gravel of	ar to	_
-		0.60	ES					brick.		
		0.85	D		0.80 0.90			MADE GROUND: Black red angula subangular fine to coarse gravelly of slate and brick. Firm brown grey CLAY with modera	clay. Gravel is	/
		1.20 1.20	D	N=11 (2,2/3,2,3,3)				content.		
		1.70 1.70	D	N=50 (25 for 50mm/50 for 75mm	1.70			End of borehole at 1.70 m	1	
	ation cle							vater encountered. 4. Location (0.5m plain, 1.2m slotted).	6	

					Borehole No. WS16 Sheet 1 of 1				
		Project No. GRO-22013		Co-ords:	-	Hole Type WS			
ocation: CAERNARFON		0.10 22010		Level:		Scale 1:25			
Client:	GWYNED	D SKIP	& PLANT HIRE			Dates:	16/03/2022 -	Logged By AW	
Well Water		s and Ir	n Situ Testing	Depth	Level	Legend	Stratum Descriptior	• 	
Strikes	Depth (m)	Туре	Results	(m)	(m)		MADE GROUND: Concrete.	1	
	0.25 0.25	DES		0.15 0.20 0.30			MADE GROUND: Concrete. MADE GROUND: Blue angular to s fine to coarse gravel of slate. MADE GROUND: Black angular to fine to coarse gravel of slate. End of borehole at 0.30 m	subangular	1
									3
Remarks	eared using h	and held	d CAT. 2 Hand n	it dug to 1 2r	n bal. 3. N	lo groundw	vater encountered. 4. Location		5

GRC		СН				Во	reho	ole Log	Borehole N WS17 Sheet 1 of	7
rojec	t Name:	GWYNED	D SKIF		oject No. RO-22013		Co-ords:	-	Hole Type WS	е
ocati	on:	CAERNAF	RFON				Level:		Scale 1:25	
lient:		GWYNED	D SKIF	P & PLANT HIRE			Dates:	16/03/2022 -	Logged B AW	y
Vell	Water	Samples	s and	In Situ Testing	Depth	Level	Logond	Stratum Description	1	Τ
	Strikes	Depth (m)	Туре	Results	(m)	(m)	Legend	Stratum Description	I	
					0.10			MADE GROUND: Concrete. MADE GROUND: Grey angular to s	subangular	-
		0.30	ES		0.30			fine to coarse gravel of slate. MADE GROUND: Blue angular to s	subangular	_
Ŋ		0.50	ES					fine to coarse gravel of slate.	Jazangalai	
		1.20	ES	N=10 (2,2/4,3,2,1)	0.80			Firm brown CLAY with moderate co	obble content.	-
		1.70 1.80	D	N=50 (25 for 105mm/50 for 0mm)	1.80			Ēnd of borehole at 1.80 m		-
mai Loc min	ation cle	eared using ha	and he	ld CAT. 2. Hand pit tion. 5. Hole backfill	dug to 1.2r ed with ari	n bgl. 3. N sings.	No groundw	vater encountered. 4. Location	C	

GRO		СН				Bo	rehc	ole Log	WS18 Sheet 1 of	
oject	t Name:	GWYNED	D SKIF		roject No. RO-22013		Co-ords:	-	Hole Typ WS	e
catio	on:	CAERNAF	RFON				Level:		Scale 1:25	
ient:		GWYNED	D SKIF	P & PLANT HIRE			Dates:	16/03/2022 -	Logged B	Зу
	Water	Samples	s and I	n Situ Testing	Depth	Level			AW	Τ
	Strikes	Depth (m)	Туре	Results	(m)	(m)	Legend	Stratum Descriptior	1	
		0.00			0.10			MADE GROUND: Concrete. MADE GROUND: Grey angular to s	subangular	-
		0.20	ES					fine to coarse gravel of slate.		
		0.60	ES		0.40			MADE GROUND: Blue angular to s fine to coarse gravel of slate.	subangular	_
					0.70			Firm brown CLAY with moderate co	bble content.	_
		1.00	D							
		1.20		N=50 (35 for 105mm/50 for 0mm)	1.20		<u></u>	End of borehole at 1.20 m		

APPENDIX 8 - Geo-Environmental Testing Results

GWYNEDD SKIPS GEO-ENVIRONMENTAL APPRAISAL GRO-22013-3516

PO Box 499 Manchester M28 8EE

Groundtech Consulting Limited

Element Materials Technology Unit 3 Deeside Point Zone 3 Deeside Industrial Park Deeside CH5 2UA P: +44 (0) 1244 833780 F: +44 (0) 1244 833781

W: www.element.com

Attention :	Adam White
Date :	8th April, 2022
Your reference :	GRO-22013
Our reference :	Test Report 22/4931 Batch 1
Location :	Gwynedd skip
Date samples received :	26th March, 2022
Status :	Final Report
Issue :	1

Twenty seven samples were received for analysis on 26th March, 2022 of which twenty five were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Authorised By:

au

Bruce Leslie Project Manager

Please include all sections of this report if it is reproduced

Groundtech Consulting Limited GRO-22013 Gwynedd skip Adam White 22/4931

Report : Solid

EMT Job No:	22/4931												
EMT Sample No.	1-3	4-6	7-9	10-11	12-14	15-17	18-20	21-22	23-25	26-28			
Sample ID	WS01	WS02	WS03	WS04	WS05	WS06	WS07	WS08	WS09	WS10			
Depth	0.20	0.50	0.50	0.80	0.20	0.60	0.20	0.20	0.60	0.50	Please se	e attached r	otes for all
COC No / misc											abbrevi	ations and a	cronyms
Containers	VJT	VJT	VJT	٧J	VJT	VJB	VJT	٧J	VJT	VJB			
Sample Date	15/03/2022	15/03/2022	15/03/2022	17/03/2022	17/03/2022	17/03/2022	17/03/2022	15/03/2022	15/03/2022	15/03/2022			
Sample Type	Solid	Solid											
Batch Number	1	1	1	1	1	1	1	1	1	1			Method
Date of Receipt	26/03/2022	26/03/2022	26/03/2022	26/03/2022	26/03/2022	26/03/2022	26/03/2022	26/03/2022	26/03/2022	26/03/2022	LOD/LOR	Units	No.
Arsenic	3.5	21.4	52.6	12.6	18.3	35.3	16.2	21.3	18.4	10.1	<0.5	mg/kg	TM30/PM15
Cadmium	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM30/PM15
Chromium	62.6	131.1	62.3	107.5	52.5	77.3	38.9	44.6	51.3	50.6	<0.5	mg/kg	TM30/PM15
Copper	22	12	10	10	18	18	16	25	21	20	<1	mg/kg	TM30/PM15
Lead	8	20	23	23	19	21	25	20	18	14	<5	mg/kg	TM30/PM15
Mercury	<0.1	0.1	0.3	<0.1	0.1	<0.1	0.2	<0.1	0.1	0.2	<0.1	mg/kg	TM30/PM15
Nickel	31.6	21.2	18.7	15.6	18.2	24.1	13.8	26.5	24.7	25.8	<0.7	mg/kg	TM30/PM15
Selenium	<1	2	2	2	2	2	2	2	1	1	<1	mg/kg	TM30/PM15
Zinc	86	52	36	40	69	52	81	71	63	88	<5	mg/kg	TM30/PM15
PAH MS													
Naphthalene	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	0.11	<0.04	mg/kg	TM4/PM8
Acenaphthylene	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	0.08	<0.03	mg/kg	TM4/PM8
Acenaphthene	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.59	<0.05	mg/kg	TM4/PM8
Fluorene	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	0.42	<0.04	mg/kg	TM4/PM8
Phenanthrene	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	2.28	<0.03	mg/kg	TM4/PM8
Anthracene	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	0.72	<0.04	mg/kg	TM4/PM8
Fluoranthene	<0.03	<0.03	<0.03	0.04	<0.03	<0.03	<0.03	<0.03	<0.03	4.27	<0.03	mg/kg	TM4/PM8
Pyrene	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	3.43	<0.03	mg/kg	TM4/PM8
Benzo(a)anthracene	<0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	1.30	< 0.06	mg/kg	TM4/PM8
Chrysene	<0.02	<0.02	< 0.02	0.04	< 0.02	< 0.02	<0.02	<0.02	< 0.02	1.32	<0.02	mg/kg	TM4/PM8
Benzo(bk)fluoranthene	<0.07 <0.04	2.10 1.01	<0.07 <0.04	mg/kg	TM4/PM8 TM4/PM8								
Benzo(a)pyrene Indeno(123cd)pyrene	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	0.76	<0.04	mg/kg mg/kg	TM4/PM8
Dibenzo(ah)anthracene	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	0.13	<0.04	mg/kg	TM4/PM8
Benzo(ghi)perylene	<0.04	<0.04	<0.04	< 0.04	<0.04	<0.04	<0.04	<0.04	<0.04	0.65	<0.04	mg/kg	TM4/PM8
PAH 16 Total	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	19.2	<0.6	mg/kg	TM4/PM8
Benzo(b)fluoranthene	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	1.51	<0.05	mg/kg	TM4/PM8
Benzo(k)fluoranthene	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.59	<0.02	mg/kg	TM4/PM8
PAH Surrogate % Recovery	94	94	95	81	93	96	96	82	95	93	<0	%	TM4/PM8
Methyl Tertiary Butyl Ether	-	<2	-	-	-	<2	-	-	-	-	<2	ug/kg	TM15/PM10
Benzene	-	<3	-	-	-	<3	-	-	-	-	<3	ug/kg	TM15/PM10
Toluene	-	<3	-	-	-	<3	-	-	-	-	<3	ug/kg	TM15/PM10
Ethylbenzene	-	<3	-	-	-	<3	-	-	-	-	<3	ug/kg	TM15/PM10
m/p-Xylene	-	<5	-	-	-	<5	-	-	-	-	<5	ug/kg	TM15/PM10
o-Xylene	-	<3	-	-	-	<3	-	-	-	-	<3	ug/kg	TM15/PM10
Surrogate Recovery Toluene D8 Surrogate Recovery 4-Bromofluorobenzene	-	102 101	-	-	-	103 95	-	-	-	-	<0 <0	%	TM15/PM10 TM15/PM10
Surrogate Recovery 4-Bromonuorobenzene	-	101	-	-	-	95	-	-	-	-	<0	70	TMT5/PMT0

Client Name:
Reference:
Location:
Contact:
EMT Job No:

Groundtech Consulting Limited GRO-22013 Gwynedd skip Adam White 22/4931

Report : Solid

EMT Job No:	22/4931												
EMT Sample No.	1-3	4-6	7-9	10-11	12-14	15-17	18-20	21-22	23-25	26-28			
Sample ID	WS01	WS02	W\$03	WS04	WS05	WS06	WS07	WS08	WS09	WS10			
Depth	0.20	0.50	0.50	0.80	0.20	0.60	0.20	0.20	0.60	0.50	Please se	e attached n	otes for all
COC No / misc												ations and a	
Containers	VJT	VJT	VJT	٧J	VJT	VJB	VJT	٧J	VJT	VJB			
Sample Date	15/03/2022	15/03/2022	15/03/2022	17/03/2022	17/03/2022	17/03/2022	17/03/2022	15/03/2022	15/03/2022	15/03/2022			
Sample Type	Solid												
Batch Number	1	1	1	1	1	1	1	1	1	1			Method
Date of Receipt	26/03/2022	26/03/2022	26/03/2022	26/03/2022	26/03/2022	26/03/2022	26/03/2022	26/03/2022	26/03/2022	26/03/2022	LOD/LOR	Units	No.
TPH CWG													
Aliphatics													
>C5-C6 (HS_1D_AL)	-	<0.1	-	-	-	<0.1	-	-	-	-	<0.1	mg/kg	TM36/PM12
>C6-C8 (HS_1D_AL)	-	<0.1	-	-	-	<0.1	-	-	-	-	<0.1	mg/kg	TM36/PM12
>C8-C10 (HS 1D AL)	-	<0.1	-	-	-	<0.1	-	-	-	-	<0.1	mg/kg	TM36/PM12
>C10-C12 (EH_CU_1D_AL)	-	<0.2	-	-	-	<0.2	-	-	-	-	<0.2	mg/kg	TM5/PM8/PM16
>C12-C16 (EH_CU_1D_AL)	-	<4	-	-	-	<4	-	-	-	-	<4	mg/kg	TM5/PM8/PM16
>C16-C21 (EH_CU_1D_AL)	-	<7	-	-	-	<7	-	-	-		<7	mg/kg	TM5/PM8/PM16
>C21-C35 (EH_CU_1D_AL)	-	<7	-	-	-	<7	-	-	-	-	<7	mg/kg	TM5/PM8/PM16
Total aliphatics C5-35 (EH+HS_CU_1D_AL)	-	<19	-	-	-	<19	-	-	-	-	<19	mg/kg	TM5/TM36/PM8/PM12/PM16
Aromatics		10				10					10	mg/ng	
>C5-EC7 (HS_1D_AR)	-	<0.1	-	-	-	<0.1	-	-	-	-	<0.1	mg/kg	TM36/PM12
>EC7-EC8 (HS_1D_AR)	-	<0.1	-	-	-	<0.1	-	-	-	-	<0.1	mg/kg	TM36/PM12
>EC8-EC10 (HS_1D_AR)	-	<0.1	-	_	-	<0.1	-	_	_	_	<0.1	mg/kg	TM36/PM12
>EC10-EC12 (EH_CU_1D_AR)		<0.1	-	-	-	<0.1	-	-	-	-	<0.1	mg/kg	TM5/PM8/PM16
>EC10-EC12 (EH_CU_1D_AR)		<0.2	-	-	-	<0.2	-	-	-	-	<0.2	mg/kg	TM5/PM8/PM16
		<7	-	-	-	<7	-	-	-	-	<7		TM5/PM8/PM16
>EC16-EC21 (EH_CU_1D_AR) >EC21-EC35 (EH_CU_1D_AR)		<7	-			<7	-	-			<7	mg/kg	TM5/PM8/PM16
	-	<19	-	-	-	<19	-	-	-	-	<19	mg/kg	TM5/TM36/PM8/PM12/PM16
Total aromatics C5-35 (EH+HS_CU_1D_AR) Total aliphatics and aromatics(C5-35) (EH+HS_CU_1D_Total)	-		-	-	-		-	-		-		mg/kg	TM5/TM36/PM8/PM12/PM16
	-	<38	-	-	-	<38	-	-	-	-	<38	mg/kg	
Hexavalent Chromium	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	mg/kg	TM38/PM20
Sulphate as SO4 (2:1 Ext)	0.0082	0.0161	0.0287	0.0115	0.0207	0.0220	0.0230	0.0184	0.0141	0.0995	<0.0015	g/l	TM38/PM20
Organic Matter	<0.2	0.6	0.6	1.2	1.2	0.3	2.2	0.2	<0.2	0.8	<0.2	%	TM21/PM24
	~0.Z	0.0	0.0	1.2	1.2	0.5	2.2	0.2	~0.2	0.0	~0.2	70	111/2 1/1-11/24
рН	8.80	7.22	7.59	6.84	5.89	6.93	6.53	6.20	7.65	10.20	<0.01	pH units	TM73/PM11

Groundtech Consulting Limited GRO-22013 Gwynedd skip Adam White 22/4931

Report : Solid

EMT Job No:	22/4931												
EMT Sample No.	29-31	32-34	35-37	38-41	42-44	45-47	48-50	51-53	54	55			
Sample ID	WS11	WS12	WS13	WS14	WS15	WS16	WS17	WS18	WS15	WS02			
Depth	0.20	0.60	0.50	0.20	0.60	0.25	0.30	0.60	1.70	1.50	Please se	e attached n	notes for all
COC No / misc												ations and a	
Containers	VJB	VJB	VJT	VJT	VJT	VJT	VJT	VJB	т	т			
Sample Date	15/03/2022	15/03/2022	16/03/2022	16/03/2022	16/03/2022	16/03/2022	16/03/2022	17/03/2022	18/03/2022	15/03/2022			
Sample Type	Solid	Solid	Solid	Solid	Solid	Solid	Solid	Solid	Solid	Solid			
Batch Number	1	1	1	1	1	1	1	1	1	1			Method
Date of Receipt	26/03/2022	26/03/2022	26/03/2022	26/03/2022	26/03/2022	26/03/2022	26/03/2022	26/03/2022	26/03/2022	26/03/2022	LOD/LOR	Units	No.
Arsenic	7.7	21.9	6.7	6.4	8.9	5.9	0.8	4.9	-	-	<0.5	mg/kg	TM30/PM15
Cadmium	<0.1	<0.1	<0.1	<0.1	0.3	0.1	<0.1	<0.1	-	-	<0.1	mg/kg	TM30/PM15
Chromium	39.0	54.3	40.9	108.7	54.9	69.2	130.7	94.6	-	-	<0.5	mg/kg	TM30/PM15
Copper	46	19	23	12	54	34	45	34	-	-	<1	mg/kg	TM30/PM15
Lead	9	23	163	20	355	23	<5	10	-	-	<5	mg/kg	TM30/PM15
Mercury	0.1	<0.1	<0.1	<0.1	0.2	0.1	0.1	0.2	-	-	<0.1	mg/kg	TM30/PM15
Nickel	31.3	26.2	11.3	19.7	16.6	24.9	31.2	24.0	-	-	<0.7	mg/kg	TM30/PM15
Selenium	1	2	<1	1	<1	<1	1	1	-	-	<1	mg/kg	TM30/PM15
Zinc	100	62	118	75	154	108	59	56	-	-	<5	mg/kg	TM30/PM15
PAH MS													
Naphthalene	<0.04	<0.04	0.18	<0.04	<0.04	<0.40 _{AA}	<0.04	<0.04	-	-	<0.04	mg/kg	TM4/PM8
Acenaphthylene	<0.03	<0.03	<0.03	<0.03	<0.03	<0.30 _{AA}	<0.03	<0.03	-	-	<0.03	mg/kg	TM4/PM8
Acenaphthene	<0.05	<0.05	0.47	<0.05	<0.05	<0.50 _{AA}	<0.05	<0.05	-	-	<0.05	mg/kg	TM4/PM8
Fluorene	<0.04	<0.04	0.55	<0.04	<0.04	<0.40 _{AA}	<0.04	<0.04	-	-	<0.04	mg/kg	TM4/PM8
Phenanthrene	<0.03	<0.03	3.98	0.07	0.11	0.96 _{AA}	<0.03	<0.03	-	-	<0.03	mg/kg	TM4/PM8
Anthracene	<0.04	<0.04	0.83	<0.04	0.04	0.66 _{AA}	<0.04	<0.04	-	-	<0.04	mg/kg	TM4/PM8
Fluoranthene	<0.03	<0.03	2.89	0.15	0.24	3.68 _{AA}	<0.03	0.05	-	-	<0.03	mg/kg	TM4/PM8
Pyrene	<0.03	<0.03	3.01	0.15	0.21	3.86 _{AA}	<0.03	0.05	-	-	<0.03	mg/kg	TM4/PM8
Benzo(a)anthracene	<0.06	<0.06	1.11	0.08	0.13	2.14 _{AA}	<0.06	<0.06	-	-	<0.06	mg/kg	TM4/PM8
Chrysene	<0.02	<0.02	1.43	0.10	0.15	2.07 _{AA}	<0.02	0.04	-	-	<0.02	mg/kg	TM4/PM8
Benzo(bk)fluoranthene	<0.07	<0.07	1.99	0.16	0.24	5.59 _{AA}	<0.07	0.07	-	-	<0.07	mg/kg	TM4/PM8
Benzo(a)pyrene	<0.04	<0.04	1.36	0.09	0.13	3.25 _{AA}	<0.04	<0.04	-	-	<0.04	mg/kg	TM4/PM8
Indeno(123cd)pyrene	<0.04	<0.04	0.95	0.07	0.10	2.46 _{AA}	<0.04	<0.04	-	-	<0.04	mg/kg	TM4/PM8
Dibenzo(ah)anthracene	<0.04	<0.04	0.20	<0.04	<0.04	0.49 AA	<0.04	<0.04	-	-	<0.04	mg/kg	TM4/PM8
Benzo(ghi)perylene	<0.04	<0.04	1.05	0.07	0.10	2.24 _{AA}	<0.04	<0.04	-	-	<0.04	mg/kg	TM4/PM8
PAH 16 Total	<0.6	<0.6	20.0	0.9	1.5	27.4 _{AA}	<0.6	<0.6	-	-	<0.6	mg/kg	TM4/PM8
Benzo(b)fluoranthene	<0.05	<0.05	1.43	0.12	0.17	4.02 _{AA}	<0.05	0.05	-	-	<0.05	mg/kg	TM4/PM8
Benzo(k)fluoranthene	<0.02	<0.02	0.56	0.04	0.07	1.57 _{AA}	<0.02	<0.02	-	-	<0.02	mg/kg	TM4/PM8
PAH Surrogate % Recovery	96	89	93	89	95	93 _{AA}	98	95	-	-	<0	%	TM4/PM8
Methyl Tertiary Butyl Ether	<2	-	<2	<2	-	-	-	-	-	-	<2	ug/kg	TM15/PM10
Benzene	<3	-	<3	<3	-	-	-	-	-	-	<3	ug/kg	TM15/PM10
Toluene	<3	-	<3	4	-	-	-	-	-	-	<3	ug/kg	TM15/PM10
Ethylbenzene	<3	-	<3	5	-	-	-	-	-	-	<3	ug/kg	TM15/PM10
m/p-Xylene	<5	-	<5	8	-	-	-	-	-	-	<5	ug/kg	TM15/PM10
o-Xylene	<3	-	<3	4	-	-	-	-	-	-	<3	ug/kg	TM15/PM10
Surrogate Recovery Toluene D8	104	-	93	84	-	-	-	-	-	-	<0	%	TM15/PM10
Surrogate Recovery 4-Bromofluorobenzene	100	-	82	76	-	-	-	-	-	-	<0	%	TM15/PM10
	1	1	1	1	1				1				4

Groundtech Consulting Limited GRO-22013 Gwynedd skip Adam White 22/4931

Report : Solid

EMT Job No:	22/4931										_		
EMT Sample No.	29-31	32-34	35-37	38-41	42-44	45-47	48-50	51-53	54	55			
Sample ID	WS11	WS12	WS13	WS14	WS15	WS16	WS17	WS18	WS15	WS02			
Depth	0.20	0.60	0.50	0.20	0.60	0.25	0.30	0.60	1.70	1.50	Please se	e attached n	otes for all
COC No / misc												ations and a	
Containers	VJB	VJB	VJT	VJT	VJT	VJT	VJT	VJB	т	т			
Sample Date	15/03/2022	15/03/2022	16/03/2022	16/03/2022	16/03/2022	16/03/2022	16/03/2022	17/03/2022	18/03/2022	15/03/2022			
Sample Type	Solid												
Batch Number	1	1	1	1	1	1	1	1	1	1			Method
Date of Receipt	26/03/2022	26/03/2022	26/03/2022	26/03/2022	26/03/2022	26/03/2022	26/03/2022	26/03/2022	26/03/2022	26/03/2022	LOD/LOR	Units	No.
TPH CWG													
Aliphatics													
>C5-C6 (HS_1D_AL)	<0.1	-	<0.1	<0.1	-	-	-	-	-	-	<0.1	mg/kg	TM36/PM12
>C6-C8 (HS_1D_AL)	<0.1	-	<0.1	<0.1	-	-	-	-	-	-	<0.1	mg/kg	TM36/PM12
>C8-C10 (HS_1D_AL)	<0.1	-	<0.1	0.2	-	-	-	-	-	-	<0.1	mg/kg	TM36/PM12
>C10-C12 (EH_CU_1D_AL)	<0.2	-	<0.2	<0.2	-	-	-	-	-	-	<0.2	mg/kg	TM5/PM8/PM16
>C12-C16 (EH_CU_1D_AL)	<4	-	<4	<4	-	-	-	-	-	-	<4	mg/kg	TM5/PM8/PM16
>C16-C21 (EH_CU_1D_AL)	<7	-	<7	<7	-	-	-	-	-	-	<7	mg/kg	TM5/PM8/PM16
>C21-C35 (EH_CU_1D_AL)	<7	-	34	82	-	-	-	-	-	-	<7	mg/kg	TM5/PM8/PM16
Total aliphatics C5-35 (EH+HS_CU_1D_AL)	<19	-	34	82	-	-	-	-	-	-	<19	mg/kg	TM5/TM36/PM8/PM12/PM16
Aromatics													
>C5-EC7 (HS_1D_AR)	<0.1	-	<0.1	<0.1	-	-	-	-	-	-	<0.1	mg/kg	TM36/PM12
>EC7-EC8 (HS_1D_AR)	<0.1	-	<0.1	<0.1	-	-	-	-	-	-	<0.1	mg/kg	TM36/PM12
>EC8-EC10 (HS_1D_AR)	<0.1	-	<0.1	<0.1	-	-	-	-	-	-	<0.1	mg/kg	TM36/PM12
>EC10-EC12 (EH_CU_1D_AR)	<0.2	-	<0.2	<0.2	-	-	-	-	-	-	<0.2	mg/kg	TM5/PM8/PM16
>EC12-EC16 (EH_CU_1D_AR)	<4	-	<4	<4	-	-	-	-	-	-	<4	mg/kg	TM5/PM8/PM16
>EC16-EC21 (EH_CU_1D_AR)	<7	-	14	<7	-	-	-	-	-	-	<7	mg/kg	TM5/PM8/PM16
>EC21-EC35 (EH_CU_1D_AR)	<7	-	79	89	-	-	-	-	-	-	<7	mg/kg	TM5/PM8/PM16
Total aromatics C5-35 (EH+HS_CU_1D_AR) Total aliphatics and aromatics(C5-35) (EH+HS_CU_1D_Total)	<19 <38	-	93	89	-	-	-	-	-	-	<19	mg/kg	TM5/TM36/PM8/PM12/PM16 TM5/TM36/PM8/PM12/PM16
Total alphanes and aronales(Co-S) (EHHHS_CO_TO_TOTAL)	<38	-	127	171	-	-	-	-	-	-	<38	mg/kg	TIMO TINGOTINI (2)PM IO
Hexavalent Chromium	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	-	-	<0.3	mg/kg	TM38/PM20
Sulphate as SO4 (2:1 Ext)	0.0209	<0.0015	1.4221	0.2586	1.4571	0.3505	0.0173	0.0171	0.0940	0.0079	<0.0015	g/l	TM38/PM20
Organic Matter	<0.2	0.5	0.9	0.4	0.8	5.4	<0.2	<0.2	-	-	<0.2	%	TM21/PM24
рН	9.85	7.19	7.94	8.46	8.09	7.98	9.23	8.90	7.33	7.62	<0.01	pH units	TM73/PM11

Client Name: Reference: Location: Contact: EMT Job No: Groundtech Consulting Limited GRO-22013 Gwynedd skip Adam White 22/4931

Report : Solid

EMT Job No:	22/4931									
EMT Sample No.	56	57	58	59	60					
Sample ID	WS07	WS05	WS13	WS14	WS17					
Depth	1.70	2.00	1.00	1.50	1.80			 Diagon on	e attached n	ataa far all
COC No / misc									ations and a	
Containers	т	т	т	т	т					
Sample Date			<>	17/03/2022		 				
Sample Type		Solid	Solid	Solid	Solid					
Batch Number		1	1	1	1					
								 LOD/LOR	Units	Method No.
Date of Receipt	-	- 26/03/2022	26/03/2022	26/03/2022	- 26/03/2022			<0.5	malka	TM30/PM15
Cadmium	-	-	-	-	-			<0.3	mg/kg mg/kg	TM30/PM15
Chromium	-	-	-	-	-			<0.1	mg/kg	TM30/PM15
Copper	-	-	-	-	-			<0.5	mg/kg	TM30/PM15
Lead	-	-	-	-	-			<5	mg/kg	TM30/PM15
Mercury	-	-	-	-	-	 		 <0.1		TM30/PM15
	-	-	-	-	-				mg/kg	TM30/PM15
Nickel Selenium	-	-	-	-	-	 		 <0.7 <1	mg/kg	TM30/PM15
Zinc	-	-	-	-	-	 		 <5	mg/kg mg/kg	TM30/PM15
ZINC	-	-	-	-	-			~5	шу/ку	110130/F10113
PAH MS										
Naphthalene	-	_	-	-				<0.04	mg/kg	TM4/PM8
Acenaphthylene	-	_	-	-	-			<0.03	mg/kg	TM4/PM8
Acenaphthene	-	_	-	-	-			<0.05	mg/kg	TM4/PM8
Fluorene	-	_	-	-	-			 <0.04	mg/kg	TM4/PM8
Phenanthrene	-	_	-	-	-			<0.03	mg/kg	TM4/PM8
Anthracene	-	-	-	-	-			<0.04	mg/kg	TM4/PM8
Fluoranthene	-	-	-	-	-			<0.03	mg/kg	TM4/PM8
Pyrene	-	-	-	-	-			< 0.03	mg/kg	TM4/PM8
Benzo(a)anthracene	-	-	-	-	-			<0.06	mg/kg	TM4/PM8
Chrysene	-	-	-	-	-			<0.02	mg/kg	TM4/PM8
Benzo(bk)fluoranthene	-	-	-	-	-			<0.07	mg/kg	TM4/PM8
Benzo(a)pyrene	-	-	-	-	-			<0.04	mg/kg	TM4/PM8
Indeno(123cd)pyrene	-	-	-	-	-			<0.04	mg/kg	TM4/PM8
Dibenzo(ah)anthracene	-	-	-	-	-			<0.04	mg/kg	TM4/PM8
Benzo(ghi)perylene	-	-	-	-	-			<0.04	mg/kg	TM4/PM8
PAH 16 Total	-	-	-	-	-			<0.6	mg/kg	TM4/PM8
Benzo(b)fluoranthene	-	-	-	-	-			<0.05	mg/kg	TM4/PM8
Benzo(k)fluoranthene	-	-	-	-	-			<0.02	mg/kg	TM4/PM8
PAH Surrogate % Recovery	-	-	-	-	-			<0	%	TM4/PM8
Methyl Tertiary Butyl Ether	-	-	-	-	-			<2	ug/kg	TM15/PM10
Benzene	-	-	-	-	-			<3	ug/kg	TM15/PM10
Toluene	-	-	-	-	-			<3	ug/kg	TM15/PM10
Ethylbenzene	-	-	-	-	-			<3	ug/kg	TM15/PM10
m/p-Xylene	-	-	-	-	-	 		 <5	ug/kg	TM15/PM10
o-Xylene	-	-	-	-	-			 <3	ug/kg	TM15/PM10
Surrogate Recovery Toluene D8	-	-	-	-	-			<0	%	TM15/PM10
Surrogate Recovery 4-Bromofluorobenzene	-	-	-	-	-			<0	%	TM15/PM10
L										

Client Name: Reference: Location: Contact: Groundtech Consulting Limited GRO-22013 Gwynedd skip Adam White 22/4031

Report : Solid

EMT Job No:	22/4931									
EMT Sample No.	56	57	58	59	60					
Sample ID	WS07	WS05	WS13	WS14	WS17					
Depth	1.70	2.00	1.00	1.50	1.80			Please se	e attached n	otes for all
COC No / misc									ations and a	
Containers	т	т	т	т	т					
Sample Date			<>		16/03/2022					
Sample Type	Solid	Solid	Solid	Solid	Solid					
Batch Number	1	1	1	1	1			 LOD/LOR	Units	Method
Date of Receipt	26/03/2022	26/03/2022	26/03/2022	26/03/2022	26/03/2022					No.
TPH CWG										
Aliphatics										
>C5-C6 (HS_1D_AL)	-	-	-	-	-			<0.1	mg/kg	TM36/PM12
>C6-C8 (HS_1D_AL)	-	-	-	-	-			<0.1	mg/kg	TM36/PM12
>C8-C10 (HS_1D_AL)	-	-	-	-	-			<0.1	mg/kg	TM36/PM12
>C10-C12 (EH_CU_1D_AL)	-	-	-	-	-			<0.2	mg/kg	TM5/PM8/PM16
>C12-C16 (EH_CU_1D_AL) >C16-C21 (EH_CU_1D_AL)	-	-	-	-	-			<4 <7	mg/kg	TM5/PM8/PM16 TM5/PM8/PM16
>C16-C21 (EH_CU_1D_AL)	-	-	-	-	-			<7	mg/kg mg/kg	TM5/PM8/PM16
Total aliphatics C5-35 (EH+HS_CU_1D_AL)	-	-	-	-	-			<19	mg/kg	TM5/TM36/PM8/PM12/PM18
Aromatics								10	ing/ig	
>C5-EC7 (HS_1D_AR)	-	-	-	-	-			<0.1	mg/kg	TM36/PM12
>EC7-EC8 (HS_1D_AR)	-	-	-	-	-			<0.1	mg/kg	TM36/PM12
>EC8-EC10 (HS_1D_AR)	-	-	-	-	-			<0.1	mg/kg	TM36/PM12
>EC10-EC12 (EH_CU_1D_AR)	-	-	-	-	-			<0.2	mg/kg	TM5/PM8/PM16
>EC12-EC16 (EH_CU_1D_AR)	-	-	-	-	-			<4	mg/kg	TM5/PM8/PM16
>EC16-EC21 (EH_CU_1D_AR)	-	-	-	-	-			<7	mg/kg	TM5/PM8/PM16
>EC21-EC35 (EH_CU_1D_AR)	-	-	-	-	-			<7	mg/kg	TM5/PM8/PM16
Total aromatics C5-35 (EH+HS_CU_1D_AR)	-	-	-	-	-			<19	mg/kg	TM5/TM36/PM8/PM12/PM1
Total aliphatics and aromatics(C5-35) (EH+HS_CU_1D_Total)	-	-	-	-	-			<38	mg/kg	TM5/TM36/PM8/PM12/PM1
Hexavalent Chromium	_	-	-	-	-			<0.3	ma/ka	TM38/PM20
Sulphate as SO4 (2:1 Ext)	- 0.0293	0.0066	0.0318	0.0176	0.0439			<0.0015	mg/kg g/l	TM38/PM20
	0.0200	0.0000	0.0010	0.0170	0.0400			-0.0010	9/1	
Organic Matter	-	-	-	-	-			<0.2	%	TM21/PM24
рН	6.90	6.42	7.20	6.93	7.05			<0.01	pH units	TM73/PM11

Client Name: Reference: Location: Contact: EMT Job No: Groundtech Consulting Limited GRO-22013 Gwynedd skip Adam White 22/4931

SVOC Report : Solid

EMT Job No:	22/4931										
EMT Sample No.	4-6	15-17	29-31	35-37	38-41				1		
Sample ID	WS02	WS06	WS11	WS13	WS14						
Depth	0.50	0.60	0.20	0.50	0.20					e attached n	
COC No / misc									abbrevia	ations and a	cronyms
Containers	VJT	VJB	VJB	VJT	VJT						
Sample Date	15/03/2022	17/03/2022	15/03/2022	16/03/2022	16/03/2022						
Sample Type	Solid	Solid	Solid	Solid	Solid						
Batch Number	1	1	1	1	1						Method
Date of Receipt	26/03/2022	26/03/2022	26/03/2022		26/03/2022				LOD/LOR	Units	No.
SVOC MS											
Phenols											
2-Chlorophenol	<10	<10	<10	<10	<10				<10	ug/kg	TM16/PM8
2-Methylphenol	<10	<10	<10	<10	<10				<10	ug/kg	TM16/PM8
2-Nitrophenol	<10	<10	<10	<10	<10				<10	ug/kg	TM16/PM8
2,4-Dichlorophenol	<10	<10	<10	<10	<10				<10	ug/kg	TM16/PM8
2,4-Dimethylphenol	<10	<10	<10	16	<10				<10	ug/kg	TM16/PM8
2,4,5-Trichlorophenol	<10	<10	<10	<10	<10				<10	ug/kg	TM16/PM8
	<10			<10	<10						TM16/PM8
2,4,6-Trichlorophenol	<10	<10 <10	<10	<10	<10 <10				<10	ug/kg	TM16/PM8 TM16/PM8
4-Chloro-3-methylphenol	<10 <10		<10	<10 <10	<10 <10				<10	ug/kg	TM16/PM8 TM16/PM8
4-Methylphenol		<10	<10						<10	ug/kg	
4-Nitrophenol	<10	<10	<10	<10	<10				<10	ug/kg	TM16/PM8
Pentachlorophenol	<10	<10	<10	<10	<10				<10	ug/kg	TM16/PM8
Phenol	<10	<10	<10	<10	<10				<10	ug/kg	TM16/PM8
PAHs							 				Th 4 4 9 / T + + +
2-Chloronaphthalene	<10	<10	<10	<10	<10				<10	ug/kg	TM16/PM8
2-Methylnaphthalene	<10	<10	<10	71	<10				<10	ug/kg	TM16/PM8
Naphthalene	<10	<10	<10	87	<10				<10	ug/kg	TM16/PM8
Acenaphthylene	<10	<10	<10	80	<10				<10	ug/kg	TM16/PM8
Acenaphthene	<10	<10	<10	200	<10				<10	ug/kg	TM16/PM8
Fluorene	<10	<10	<10	206	21				<10	ug/kg	TM16/PM8
Phenanthrene	<10	<10	<10	2013	76				<10	ug/kg	TM16/PM8
Anthracene	<10	<10	<10	582	33				<10	ug/kg	TM16/PM8
Fluoranthene	<10	<10	<10	4122	181				<10	ug/kg	TM16/PM8
Pyrene	<10	<10	<10	4123	187				<10	ug/kg	TM16/PM8
Benzo(a)anthracene	<10	<10	<10	2071	119				<10	ug/kg	TM16/PM8
Chrysene	<10	<10	<10	1953	98				<10	ug/kg	TM16/PM8
Benzo(bk)fluoranthene	<10	<10	<10	3391	175				<10	ug/kg	TM16/PM8
Benzo(a)pyrene	<10	<10	<10	2277	104				<10	ug/kg	TM16/PM8
Indeno(123cd)pyrene	<10	<10	<10	1147	56				<10	ug/kg	TM16/PM8
Dibenzo(ah)anthracene	<10	<10	<10	386	25				<10	ug/kg	TM16/PM8
Benzo(ghi)perylene	<10	<10	<10	1246	69				<10	ug/kg	TM16/PM8
Benzo(b)fluoranthene	<10	<10	<10	2442	126				<10	ug/kg	TM16/PM8
Benzo(k)fluoranthene	<10	<10	<10	949	49				<10	ug/kg	TM16/PM8
Phthalates											
Bis(2-ethylhexyl) phthalate	<100	<100	<100	<100	561				<100	ug/kg	TM16/PM8
Butylbenzyl phthalate	<100	<100	<100	<100	<100				<100	ug/kg	TM16/PM8
Di-n-butyl phthalate	<100	<100	<100	<100	<100				<100	ug/kg	TM16/PM8
Di-n-Octyl phthalate	<100	<100	<100	<100	<100				<100	ug/kg	TM16/PM8
Diethyl phthalate Dimethyl phthalate	<100 <100	<100 <100	<100 <100	<100 <100	<100 <100				<100	ug/kg	TM16/PM8 TM16/PM8
Dimethyl phthalate	<100	<100	<100	<100	<100				<100	ug/kg	1 10/1910
	1	1	1	1	1		 1	1	I		

Client Name: Reference: Location: Contact: Groundtech Consulting Limited GRO-22013 Gwynedd skip Adam White 22/4931

SVOC Report : Solid

	Adam Wh	ite								
EMT Job No:	22/4931									
EMT Sample No.	4-6	15-17	29-31	35-37	38-41					
Sample ID	WS02	W S06	WS11	WS13	WS14					
Donth	0.50	0.60	0.20	0.50	0.20			D		
Depth	0.50	0.60	0.20	0.50	0.20				e attached n ations and a	
COC No / misc	V/17	V/ID	1415		VIT			abbievi		biolityinio
Containers	V J T	V J B	V J B	VJT	VJT					
Sample Date	15/03/2022	17/03/2022		16/03/2022	16/03/2022					
Sample Type	Solid	Solid	Solid	Solid	Solid					
Batch Number	1	1	1	1	1			LOD/LOR	Units	Method No.
Date of Receipt	26/03/2022	26/03/2022	26/03/2022	26/03/2022	26/03/2022					110.
SVOC MS Other SVOCs										
	.40	.10	.10	.40	.10					THEOLONIO
1,2-Dichlorobenzene	<10	<10	<10	<10	<10			<10	ug/kg	TM16/PM8
1,2,4-Trichlorobenzene	<10	<10	<10	<10	<10			<10	ug/kg	TM16/PM8
1,3-Dichlorobenzene 1,4-Dichlorobenzene	<10 <10	<10 <10	<10	<10 <10	<10 <10			<10	ug/kg	TM16/PM8 TM16/PM8
2-Nitroaniline	<10	<10	<10 <10	<10	<10			<10 <10	ug/kg	TM16/PM8
2.4-Dinitrotoluene	<10 <10	<10	<10	<10	<10				ug/kg	TM16/PM8 TM16/PM8
								<10	ug/kg	
2,6-Dinitrotoluene	<10	<10	<10	<10	<10			<10	ug/kg	TM16/PM8
3-Nitroaniline	<10	<10	<10	<10	<10			<10	ug/kg	TM16/PM8
4-Bromophenylphenylether	<10	<10	<10	<10	<10			<10	ug/kg	TM16/PM8
4-Chloroaniline	<10	<10	<10	<10	<10	 	 	 <10	ug/kg	TM16/PM8
4-Chlorophenylphenylether	<10	<10	<10	<10	<10			<10	ug/kg	TM16/PM8
4-Nitroaniline	<10	<10	<10	<10	<10			<10	ug/kg	TM16/PM8
Azobenzene	<10	<10	<10	<10	<10			<10	ug/kg	TM16/PM8
Bis(2-chloroethoxy)methane	<10	<10	<10	<10	<10			<10	ug/kg	TM16/PM8
Bis(2-chloroethyl)ether	<10	<10	<10	<10	<10	 	 	 <10	ug/kg	TM16/PM8
Carbazole	<10	<10	<10	218	<10			<10	ug/kg	TM16/PM8
Dibenzofuran	<10	<10	<10	89	11			<10	ug/kg	TM16/PM8
Hexachlorobenzene	<10	<10	<10	<10	<10			<10	ug/kg	TM16/PM8
Hexachlorobutadiene	<10	<10	<10	<10	<10			<10	ug/kg	TM16/PM8
Hexachlorocyclopentadiene	<10	<10	<10	<10	<10			<10	ug/kg	TM16/PM8
Hexachloroethane	<10	<10	<10	<10	<10			<10	ug/kg	TM16/PM8
Isophorone	<10	<10	<10	<10	<10			<10	ug/kg	TM16/PM8
N-nitrosodi-n-propylamine	<10	<10	<10	<10	<10			<10	ug/kg	TM16/PM8
Nitrobenzene	<10	<10	<10	<10	<10			<10	ug/kg	TM16/PM8
Surrogate Recovery 2-Fluorobiphenyl	110	113	114	113	112			<0	%	TM16/PM8
Surrogate Recovery p-Terphenyl-d14	108	112	111	120	119			<0	%	TM16/PM8
					•					·

Client Name: Reference: Location: Contact: EMT Job No: Groundtech Consulting Limited GRO-22013 Gwynedd skip Adam White 22/4931

VOC Report : Solid

EMI JOD NO:	22/4931					 	 	 -		
EMT Sample No.	4-6	15-17	29-31	35-37	38-41					
Sample ID	WS02	WS06	WS11	WS13	WS14					
Depth	0.50	0.60	0.20	0.50	0.20			Please se	e attached r	notes for all
COC No / misc	0.00	0.00	0.20	0.00	0.20				ations and a	
Containers	VJT	VJB	VJB	VJT	VJT					
Sample Date	15/03/2022	17/03/2022	15/03/2022	16/03/2022	16/03/2022					
Sample Type	Solid	Solid	Solid	Solid	Solid					
Batch Number	1	1	1	1	1			LOD/LOR	Units	Method No.
Date of Receipt	26/03/2022	26/03/2022	26/03/2022	26/03/2022	26/03/2022					NO.
Dichlorodifluoromethane	<2	<2	<2	<2	<2			<2	ug/kg	TM15/PM10
Methyl Tertiary Butyl Ether	<2	<2	<2	<2	<2			<2	ug/kg	TM15/PM10
Chloromethane	<3	<3	<3	<3	<3			<3	ug/kg	TM15/PM10
Vinyl Chloride	<2	<2	<2	<2	<2			<2	ug/kg	TM15_A/PM10
Bromomethane	<1	<1	<1	<1	<1			<1	ug/kg	TM15/PM10
Chloroethane	<2	<2	<2	<2	<2			<2	ug/kg	TM15/PM10
Trichlorofluoromethane	<2	<2	<2	<2	<2			<2	ug/kg	TM15/PM10 TM15/PM10
1,1-Dichloroethene (1,1 DCE) Dichloromethane (DCM)	<6 <7	<6 <7	<6 <7	<6 <7	<6 <7			<6 <7	ug/kg ug/kg	TM15/PM10
trans-1-2-Dichloroethene	<7	<7	<3	<3	<3			<3	ug/kg ug/kg	TM15/PM10
1,1-Dichloroethane	<3	<3	<3	<3	<3			<3	ug/kg	TM15/PM10
cis-1-2-Dichloroethene	<3	<3	<3	<3	<3			<3	ug/kg	TM15/PM10
2,2-Dichloropropane	<4	<4	<4	<4	<4			<4	ug/kg	TM15/PM10
Bromochloromethane	<3	<3	<3	<3	<3			<3	ug/kg	TM15/PM10
Chloroform	<3	<3	<3	<3	<3			<3	ug/kg	TM15/PM10
1,1,1-Trichloroethane	<3 <3	<3 <3	<3 <3	<3 <3	<3 <3			<3 <3	ug/kg	TM15/PM10 TM15/PM10
1,1-Dichloropropene Carbon tetrachloride	<3 <4	<3 <4	<3 <4	<3 <4	<3 <4			<3	ug/kg ug/kg	TM15/PM10
1,2-Dichloroethane	<4	<4	<4	<4	<4			<4	ug/kg	TM15/PM10
Benzene	<3	<3	<3	<3	<3			<3	ug/kg	TM15/PM10
Trichloroethene (TCE)	<3	<3	<3	<3	<3			<3	ug/kg	TM15/PM10
1,2-Dichloropropane	<6	<6	<6	<6	<6			<6	ug/kg	TM15/PM10
Dibromomethane	<3	<3	<3	<3	<3			<3	ug/kg	TM15/PM10
Bromodichloromethane	<3	<3	<3	<3	<3			<3	ug/kg	TM15/PM10
cis-1-3-Dichloropropene Toluene	<4 <3	<4 <3	<4 <3	<4 <3	<4 4		 	<4	ug/kg ug/kg	TM15/PM10 TM15/PM10
trans-1-3-Dichloropropene	<3	<3	<3	<3	<3			<3	ug/kg	TM15/PM10
1,1,2-Trichloroethane	<3	<3	<3	<3	<3			<3	ug/kg	TM15/PM10
Tetrachloroethene (PCE)	<3	<3	<3	<3	<3			<3	ug/kg	TM15/PM10
1,3-Dichloropropane	<3	<3	<3	<3	<3			<3	ug/kg	TM15/PM10
Dibromochloromethane	<3	<3	<3	<3	<3			<3	ug/kg	TM15/PM10
1,2-Dibromoethane	<3	<3	<3	<3	<3			<3	ug/kg	TM15/PM10
Chlorobenzene 1,1,1,2-Tetrachloroethane	<3 <3	<3 <3	<3 <3	<3 <3	<3 <3			<3 <3	ug/kg ug/kg	TM15/PM10 TM15/PM10
Ethylbenzene	<3	<3	<3	<3	5			<3	ug/kg	TM15/PM10
m/p-Xylene	<5	<5	<5	<5	8			<5	ug/kg	TM15/PM10
o-Xylene	<3	<3	<3	<3	4			<3	ug/kg	TM15/PM10
Styrene	<3	<3	<3	<3	<3			<3	ug/kg	TM15_A/PM10
Bromoform	<3	<3	<3	<3	<3			<3	ug/kg	TM15/PM10
Isopropylbenzene	<3	<3	<3	<3	<3			<3	ug/kg	TM15/PM10
1,1,2,2-Tetrachloroethane Bromobenzene	<3 <2	<3 <2	<3 <2	<3 <2	<3 <2			<3 <2	ug/kg ug/kg	TM15/PM10 TM15/PM10
1,2,3-Trichloropropane	<2 <4	<2 <4	<2	<2	<2 <4			<2	ug/kg ug/kg	TM15/PM10
Propylbenzene	<4	<4	<4	<4	<4			<4	ug/kg	TM15/PM10
2-Chlorotoluene	<3	<3	<3	<3	<3			<3	ug/kg	TM15/PM10
1,3,5-Trimethylbenzene	<3	<3	<3	<3	4			<3	ug/kg	TM15/PM10
4-Chlorotoluene	<3	<3	<3	<3	<3			<3	ug/kg	TM15/PM10
tert-Butylbenzene	<5	<5	<5	<5	<5			<5	ug/kg	TM15/PM10
1,2,4-Trimethylbenzene	<6 <4	<6 <4	<6 <4	<6 <4	14 5			<6 <4	ug/kg	TM15/PM10 TM15/PM10
sec-Butylbenzene 4-Isopropyltoluene	<4 <4	<4 <4	<4 <4	<4 <4	5 <4			<4	ug/kg ug/kg	TM15/PM10
1,3-Dichlorobenzene	<4 <4	<4	<4	<4	<4			<4	ug/kg	TM15/PM10
1,4-Dichlorobenzene	<4	<4	<4	<4	92			<4	ug/kg	TM15/PM10
n-Butylbenzene	<4	<4	<4	<4	11			<4	ug/kg	TM15/PM10
1,2-Dichlorobenzene	<4	<4	<4	<4	<4			<4	ug/kg	TM15/PM10
1,2-Dibromo-3-chloropropane	<4	<4	<4	<4	<4			<4	ug/kg	TM15/PM10
1,2,4-Trichlorobenzene	<7	<7	<7	<7	<7			<7	ug/kg	TM15/PM10
Hexachlorobutadiene	<4 <27	<4 <27	<4 <27	<4 <27	<4 <27			<4 <27	ug/kg	TM15/PM10 TM15/PM10
Naphthalene 1,2,3-Trichlorobenzene	<27	<27	<27	<27	<27			<27	ug/kg ug/kg	TM15/PM10
Surrogate Recovery Toluene D8	102	103	104	93	84			<0	ид/кд %	TM15/PM10
Surrogate Recovery 4-Bromofluorobenzene	102	95	104	82	76			<0	%	TM15/PM10

		• •• •
MOTRIX		Solia
Matrix	-	SUHU
		•••••

Client Name:	Groundtech Consulting Limited
Reference:	GRO-22013
Location:	Gwynedd skip
Contact:	Adam White

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	EPH Interpretation
22/4931	1	WS02	0.50	4-6	No interpretation possible
22/4931	1	WS06	0.60	15-17	No interpretation possible
22/4931	1	WS11	0.20	29-31	No interpretation possible
22/4931	1	WS13	0.50	35-37	PAH's & Possible trace of lubricating oil
22/4931	1	WS14	0.20	38-41	Possible lubricating oil

Asbestos Analysis

Element Materials Technology

Groundtech Consulting Limited
GRO-22013
Gwynedd skip
Adam White

Note:

Asbestos Screen analysis is carried out in accordance with our documented in-house methods PM042 and TM065 and HSG 248 by Stereo and Polarised Light Microscopy using Dispersion Staining Techniques and is covered by our UKAS accreditation. Detailed Gravimetric Quantification and PCOM Fibre Analysis is carried out in accordance with our documented in-house methods PM042 and TM131 and HSG 248 using Stereo and Polarised Light Microscopy and Phase Contrast Optical Microscopy (PCOM). Asbestos subsamples are retained for not less than 6 months from the date of analysis unless specifically requested.

The LOQ of the Asbestos Quantification is 0.001% dry fibre of dry mass of sample.

Where the sample is not taken by a Element Materials Technology consultant, Element Materials Technology cannot be responsible for inaccurate or unrepresentative sampling.

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Analyst Name	Date Of Analysis	Analysis	Result
22/4931	1	WS01	0.20	3	Simon Postlewhite	04/04/2022	General Description (Bulk Analysis)	Soil/Stones
					Simon Postlewhite	04/04/2022	Asbestos Fibres	NAD
					Simon Postlewhite	04/04/2022	Asbestos ACM	NAD
					Simon Postlewhite	04/04/2022	Asbestos Type	NAD
22/4931	1	WS02	0.50	6	Simon Postlewhite	04/04/2022	General Description (Bulk Analysis)	Soil/Stones
					Simon Postlewhite	04/04/2022	Asbestos Fibres	NAD
					Simon Postlewhite	04/04/2022	Asbestos ACM	NAD
					Simon Postlewhite	04/04/2022	Asbestos Type	NAD
22/4931	1	WS03	0.50	9	Simon Postlewhite	04/04/2022	General Description (Bulk Analysis)	Soil/Stones
					Simon Postlewhite	04/04/2022	Asbestos Fibres	NAD
					Simon Postlewhite	04/04/2022	Asbestos ACM	NAD
					Simon Postlewhite	04/04/2022	Asbestos Type	NAD
22/4931	1	WS04	0.80	11	Andrew Alker	04/04/2022	General Description (Bulk Analysis)	soil
					Andrew Alker	04/04/2022	Asbestos Fibres	NAD
					Andrew Alker	04/04/2022	Asbestos ACM	NAD
					Andrew Alker	04/04/2022	Asbestos Type	NAD
22/4931	1	WS05	0.20	14	Catherine Coles	04/04/2022	General Description (Bulk Analysis)	soil/stone
					Catherine Coles	04/04/2022	Asbestos Fibres	NAD
					Catherine Coles	04/04/2022	Asbestos ACM	NAD
					Catherine Coles	04/04/2022	Asbestos Type	NAD
22/4931	1	WS06	0.60	17	Matthew Turner	05/04/2022	General Description (Bulk Analysis)	Soil/Stone
					Matthew Turner	05/04/2022	Asbestos Fibres	NAD
					Matthew Turner	05/04/2022	Asbestos ACM	NAD
					Matthew Turner	05/04/2022	Asbestos Type	NAD
22/4931	1	WS07	0.20	20	Catherine Coles	04/04/2022	General Description (Bulk Analysis)	soil/stone
					Catherine Coles	04/04/2022	Asbestos Fibres	NAD
					Catherine Coles	04/04/2022	Asbestos ACM	NAD
					Catherine Coles	04/04/2022	Asbestos Type	NAD
22/4931	1	WS08	0.20	22	Matthew Turner	05/04/2022	General Description (Bulk Analysis)	Soil/Stone
					Matthew Turner	05/04/2022	Asbestos Fibres	NAD
					Matthew Turner	05/04/2022	Asbestos ACM	NAD
					Matthew Turner	05/04/2022	Asbestos Type	NAD

Client Name:
Reference:
Location:

Groundtech Consulting Limited GRO-22013 Gwynedd skip Adam White

Locatio Contac			Gwynedd Adam W					
EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Analyst Name	Date Of Analysis	Analysis	Result
22/4931	1	WS09	0.60	25	Catherine Coles	04/04/2022	General Description (Bulk Analysis)	soil/stone
					Catherine Coles	04/04/2022	Asbestos Fibres	NAD
					Catherine Coles	04/04/2022	Asbestos ACM	NAD
					Catherine Coles	04/04/2022	Asbestos Type	NAD
22/4931	1	WS10	0.50	28	Matthew Turner	05/04/2022	General Description (Bulk Analysis)	Soil/Stone
					Matthew Turner	05/04/2022	Asbestos Fibres	NAD
					Matthew Turner	05/04/2022	Asbestos ACM	NAD
					Matthew Turner	05/04/2022	Asbestos Type	NAD
22/4931	1	WS11	0.20	31	Matthew Turner	05/04/2022	General Description (Bulk Analysis)	Soil/Stone
					Matthew Turner	05/04/2022	Asbestos Fibres	NAD
					Matthew Turner	05/04/2022	Asbestos ACM	NAD
					Matthew Turner	05/04/2022	Asbestos Type	NAD
22/4931	1	WS12	0.60	34	Matthew Turner	05/04/2022	General Description (Bulk Analysis)	Soil/Stone
					Matthew Turner	05/04/2022	Asbestos Fibres	NAD
					Matthew Turner	05/04/2022	Asbestos ACM	NAD
					Matthew Turner	05/04/2022	Asbestos Type	NAD
22/4931	1	WS13	0.50	37	Anthony Carman	04/04/2022	General Description (Bulk Analysis)	Soil/Stones
					Anthony Carman	04/04/2022	Asbestos Fibres	NAD
					Anthony Carman	04/04/2022	Asbestos ACM	NAD
					Anthony Carman	04/04/2022	Asbestos Type	NAD
22/4931	1	WS14	0.20	40	Anthony Carman	04/04/2022	General Description (Bulk Analysis)	Soil/Stones
					Anthony Carman	04/04/2022	Asbestos Fibres	NAD
					Anthony Carman	04/04/2022	Asbestos ACM	NAD
					Anthony Carman	04/04/2022	Asbestos Type	NAD
22/4931	1	WS15	0.60	44	Anthony Carman	04/04/2022	General Description (Bulk Analysis)	Soil/Stones
					Anthony Carman	04/04/2022	Asbestos Fibres	Fibre Bundles
					Anthony Carman	04/04/2022	Asbestos ACM	ACM Debris
					Anthony Carman	04/04/2022	Asbestos Type	Chrysotile
00/4004		10040	0.05	47				
22/4931	1	WS16	0.25	47	Andrew Alker		General Description (Bulk Analysis)	soil/stone
					Andrew Alker		Asbestos Fibres	NAD
					Andrew Alker	04/04/2022	Asbestos ACM	NAD
					Andrew Alker	04/04/2022	Asbestos Type	NAD
22/4024	1	WS17	0.20	EO	Androw Alker	04/04/2022	Conoral Description (Bulk Analysis)	soil/stopp
22/4931	1	VV01/	0.30	50	Andrew Alker		General Description (Bulk Analysis)	soil/stone
					Andrew Alker	04/04/2022	Asbestos Fibres	NAD
					Andrew Alker Andrew Alker	04/04/2022	Asbestos ACM	NAD
					Andrew Alker	04/04/2022	Asbestos Type	
22/4931	1	WS18	0.60	53	Matthew Turner	05/04/2022	General Description (Bulk Analysis)	Soil/Stone
,+001			0.00		Matthew Turner	05/04/2022	Asbestos Fibres	NAD
					Matthew Turner	05/04/2022	Asbestos ACM	NAD
					Matthew Turner	05/04/2022	Asbestos Type	NAD
						55, 54, EULL		
							1	I

Client Name:Groundtech Consulting LimitedReference:GRO-22013Location:Gwynedd skipContact:Adam White

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Analysis	Reason
					No deviating sample report results for job 22/4931	

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating.

Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

EMT Job No.: 22/4931

SOILS and ASH

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary. Asbestos samples are retained for 6 months.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Limits of detection for analyses carried out on as received samples are not moisture content corrected. Results are not surrogate corrected. Samples are dried at $35^{\circ}C \pm 5^{\circ}C$ unless otherwise stated. Moisture content for CEN Leachate tests are dried at $105^{\circ}C \pm 5^{\circ}C$. Ash samples are dried at $37^{\circ}C \pm 5^{\circ}C$.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Sufficient amount of sample must be received to carry out the testing specified. Where an insufficient amount of sample has been received the testing may not meet the requirements of our accredited methods, as such accreditation may be removed.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

STACK EMISSIONS

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation for Dioxins and Furans and Dioxin like PCBs has been performed on XAD-2 Resin, only samples which use this resin will be within our MCERTS scope.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

DEVIATING SAMPLES

All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. The temperature of sample receipt is recorded on the confirmation schedules in order that the client can make an informed decision as to whether testing should still be undertaken.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation. Laboratory records are kept for a period of no less than 6 years.

REPORTS FROM THE SOUTH AFRICA LABORATORY

Any method number not prefixed with SA has been undertaken in our UK laboratory unless reported as subcontracted.

Measurement Uncertainty

Measurement uncertainty defines the range of values that could reasonably be attributed to the measured quantity. This range of values has not been included within the reported results. Uncertainty expressed as a percentage can be provided upon request.

Customer Provided Information

Sample ID and depth is information provided by the customer.

1	
#	ISO17025 (UKAS Ref No. 4225) accredited - UK.
SA	ISO17025 (SANAS Ref No.T0729) accredited - South Africa
В	Indicates analyte found in associated method blank.
DR	Dilution required.
М	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
>>	Results above calibration range, the result should be considered the minimum value. The actual result could be significantly higher.
*	Analysis subcontracted to an Element Materials Technology approved laboratory.
AD	Samples are dried at 35°C ±5°C
со	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
N	Client Sample
ТВ	Trip Blank Sample
ос	Outside Calibration Range
AA	x10 Dilution
•	

HWOL ACRONYMS AND OPERATORS USED

HS	Headspace Analysis.
EH	Extractable Hydrocarbons - i.e. everything extracted by the solvent.
CU	Clean-up - e.g. by florisil, silica gel.
1D	GC - Single coil gas chromatography.
Total	Aliphatics & Aromatics.
AL	Aliphatics only.
AR	Aromatics only.
2D	GC-GC - Double coil gas chromatography.
#1	EH_Total but with humics mathematically subtracted
#2	EU_Total but with fatty acids mathematically subtracted
_	Operator - underscore to separate acronyms (exception for +).
+	Operator to indicate cumulative e.g. EH+HS_Total or EH_CU+HS_Total
MS	Mass Spectrometry.

EMT Job No: 22/4931

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM4	Modified USEPA 8270D v5:2014 method for the solvent extraction and determination of PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.			AR	Yes
TM5	Modified 8015B v2:1996 method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM16	Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.			AR	
TM5	Modified 8015B v2:1996 method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM8/PM16	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required/Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.			AR	Yes
TM5/TM36	please refer to TM5 and TM36 for method details	PM8/PM12/PM16	please refer to PM8/PM16 and PM12 for method details			AR	Yes
TM15	Modified USEPA 8260B v2:1996. Quantitative Determination of Volatile Organic Compounds (VOCs) by Headspace GC-MS.	PM10	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.			AR	Yes
TM16	Modified USEPA 8270D v5:2014. Quantitative determination of Semi-Volatile Organic compounds (SVOCs) by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.			AR	Yes
TM21	Modified BS 7755-3:1995, ISO10694:1995 Determination of Total Organic Carbon or Total Carbon by combustion in an Eltra TOC furnace/analyser in the presence of oxygen. The CO2 generated is quantified using infra-red detection. Organic Matter (SOM) calculated as per EA MCERTS Chemical Testing of Soil, March 2012 v4.	PM24	Dried and ground solid samples are washed with hydrochloric acid, then rinsed with deionised water to remove the mineral carbon before TOC analysis.			AD	Yes
TM30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP 6010B, Rev.2, Dec.1996; Modified EPA Method 3050B, Rev.2, Dec.1996	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.			AD	Yes
TM36	Modified US EPA method 8015B v2:1996. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID. MTBE by GCFID co- elutes with 3-methylpentane if present and therefore can give a false positive. Positive MTBE results will be re-run using GC-MS to double check, when requested.	PM12	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.			AR	Yes
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993) – All anions comparable to BS ISO 15923-1: 2013I	PM20	Extraction of dried and ground or as received samples with deionised water in a 2:1 water to solid ratio using a reciprocal shaker for all analytes except hexavalent chromium. Extraction of as received sample using 10:1 ratio of 0.2M sodium hydroxide to soil for hexavalent chromium using a reciprocal shaker.			AD	Yes

EMT Job No: 22/4931

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993) – All anions comparable to BS ISO 15923-1: 2013I	PM20	Extraction of dried and ground or as received samples with deionised water in a 2:1 water to solid ratio using a reciprocal shaker for all analytes except hexavalent chromium. Extraction of as received sample using 10:1 ratio of 0.2M sodium hydroxide to soil for hexavalent chromium using a reciprocal shaker.			AR	Yes
TM65	Asbestos Bulk Identification method based on HSG 248 Second edition (2021)	PM42	Modified SCA Blue Book V.12 draft 2017 and WM3 1st Edition v1.1:2018. Solid samples undergo a thorough visual inspection for asbestos fibres prior to asbestos identification using TM065.	Yes		AR	
TM73	Modified US EPA methods 150.1 (1982) and 9045D Rev. 4 - 2004) and BS1377- 3:1990. Determination of pH by Metrohm automated probe analyser.	PM11	Extraction of as received solid samples using one part solid to 2.5 parts deionised water.			AR	No
TM15_A	Modified USEPA 8260B v2:1996. Quantitative Determination of Volatile Organic Compounds, Vinyl Chloride & Styrene by Headspace GC-MS.	PM10	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.			AR	Yes

APPENDIX 9 - Geotechnical Testing Results

GWYNEDD SKIPS GEO-ENVIRONMENTAL APPRAISAL GRO-22013-3516

LABORATORY REPORT

4043

Contract Number: PSL22/2998

Report Date: 04 May 2022

Client's Reference: GRO-22013

Client Name: Groundtech Consulting First Floor Lloyd House Orford Court Greenfold Way WN7 3XJ

For the attention of: Adam White

Contract Title:	Gwynedd Skips
Date Received: Date Commenced:	26/4/2022 26/4/2022
Date Completed:	4/5/2022

Notes: Opinions and Interpretations are outside the UKAS Accreditation

A copy of the Laboratory Schedule of accredited tests as issued by UKAS is attached to this report. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced other than in full, without the prior written approval of the laboratory.

Checked and Approved Signatories:

A Watkins (Director) R Berriman (Quality Manager) S Royle (Laboratory Manager)

£K#

L Knight (Assistant Laboratory Manager) S Eyre (Senior Technician) T Watkins (Senior Technician)

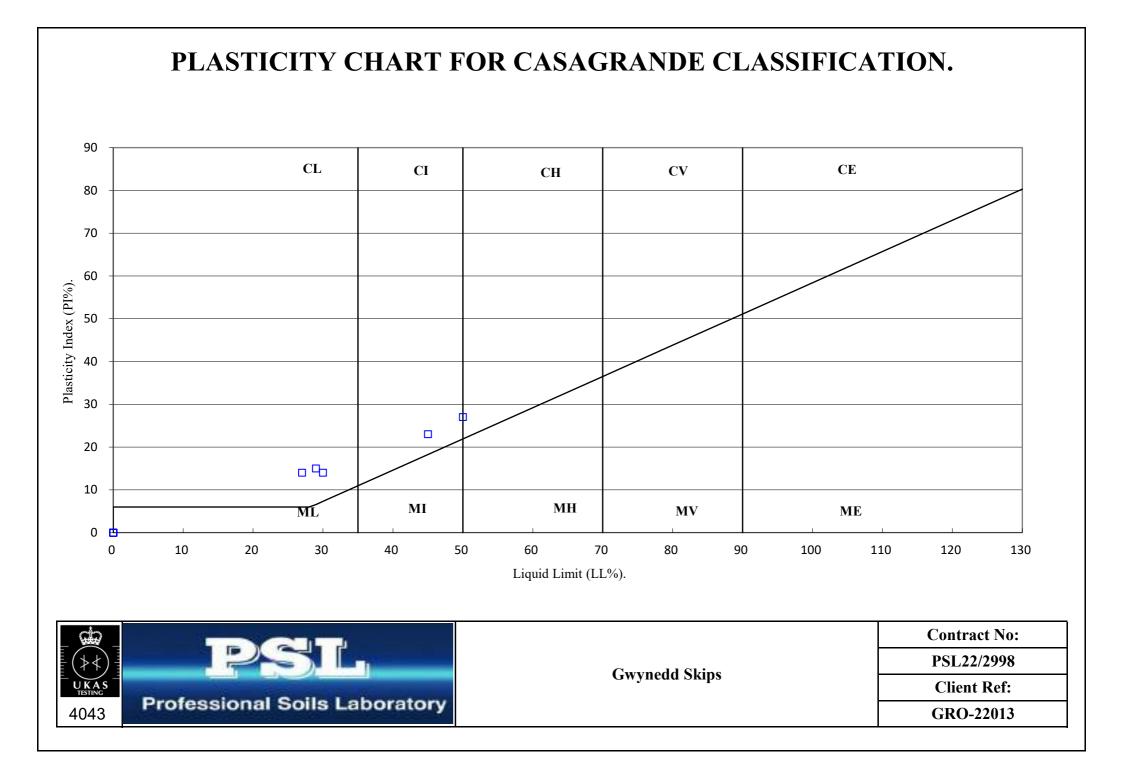
Page 1 of

5 – 7 Hexthorpe Road, Hexthorpe, Doncaster DN4 0AR tel: +44 (0)844 815 6641 fax: +44 (0)844 815 6642 e-mail: rgunson@prosoils.co.uk awatkins@prosoils.co.uk

SUMMARY OF LABORATORY SOIL DESCRIPTIONS

Hole Number	Sample Number	Sample Type	Top Depth m	Base Depth m	Description of Sample
CP02		D	3.00		Brown very gravelly very sandy CLAY.
CP03		D	4.00		Brown sandy slightly clayey GRAVEL.
CP04		В	2.50	3.00	Brown gravelly very sandy CLAY.
CP05		В	2.50	3.00	Brown very sandy clayey GRAVEL of cobbles.
WS04		D	1.50		Brown slightly gravelly sandy CLAY.
WS06		D	1.00		Brown mottled grey gravelly sandy CLAY.
CP02		U	2.00	2.45	Soft brown gravelly very sandy CLAY.
CP03		U	3.00	3.45	Brown slightly gravelly slightly sandy CLAY.
CP03		U	5.00	5.45	Brown slightly gravelly slightly sandy CLAY.
CP02		В	4.00		Brown sandy very clayey GRAVEL of cobbles.

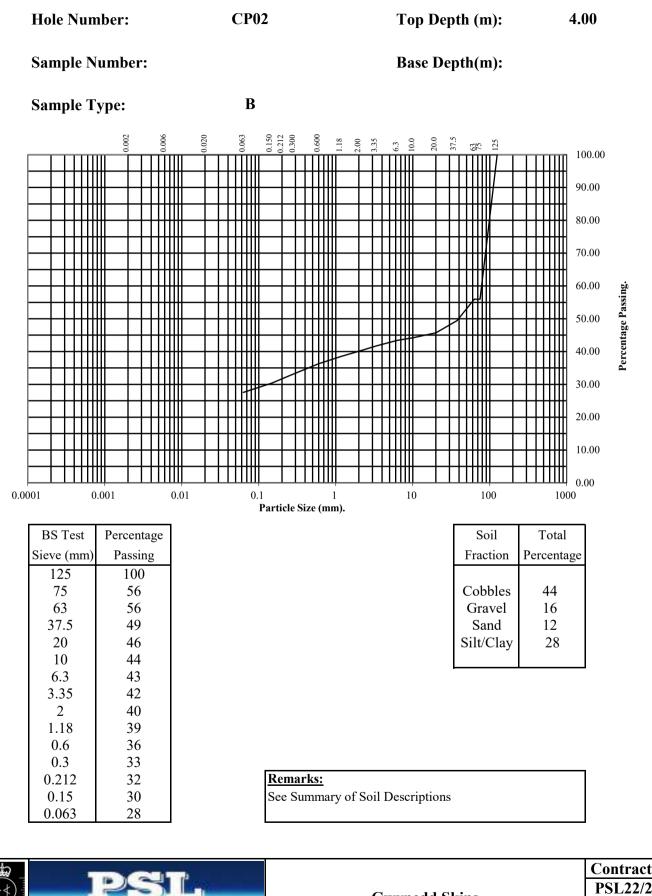
SUMMARY OF SOIL CLASSIFICATION TESTS


(BS1377 : PART 2 : 1990)

					Moisture	Linear	Particle	Liquid	Plastic	Plasticity	Passing	
Hole	Sample	Sample	Тор	Base	Content	Shrinkage	Density	Limit	Limit	Index	.425mm	Remarks
Number	Number	Туре	Depth	Depth	%	%	Mg/m ³	%	%	%	%	
			m	m	Clause 3.2	Clause 6.5	Clause 8.2	Clause 4.3/4	Clause 5.3	Clause 5.4		
CP02		D	3.00		14			27	13	14	58	Low Plasticity CL
CP03		D	4.00		1.9				NP			
CP04		В	2.50	3.00	10			29	14	15	82	Low Plasticity CL
CP05		В	2.50	3.00	12			30	16	14	38	Low Plasticity CL
WS04		D	1.50		25			50	23	27	93	High Plasticity CH
WS06		D	1.00		15			45	22	23	74	Intermediate Plasticity CI
												<u> </u>

SYMBOLS : NP : Non Plastic

* : Liquid Limit and Plastic Limit Wet Sieved.

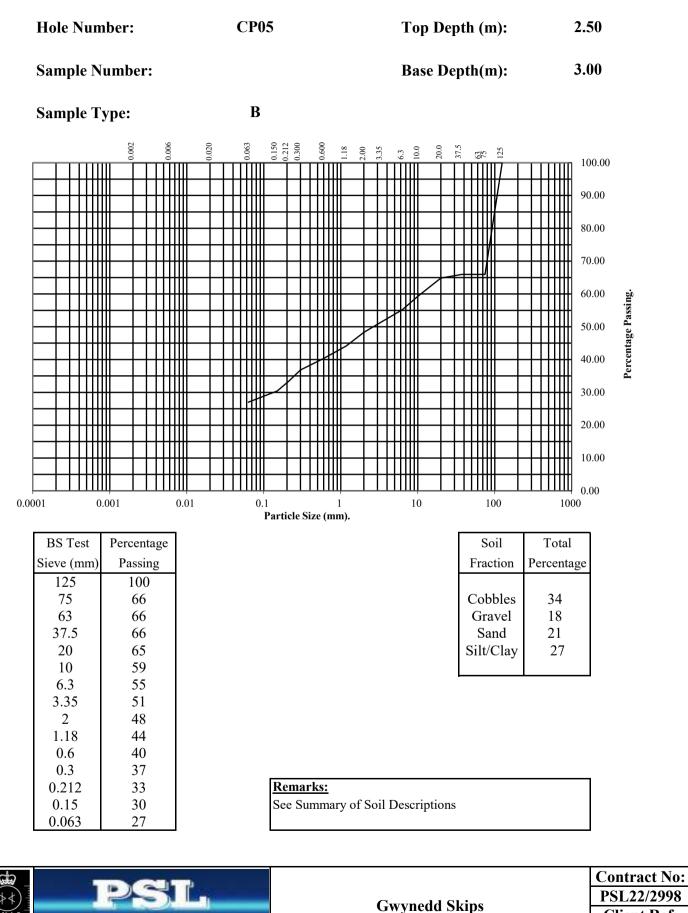


PARTICLE SIZE DISTRIBUTION TEST

BS1377 : Part 2 : 1990

Wet Sieve, Clause 9.2

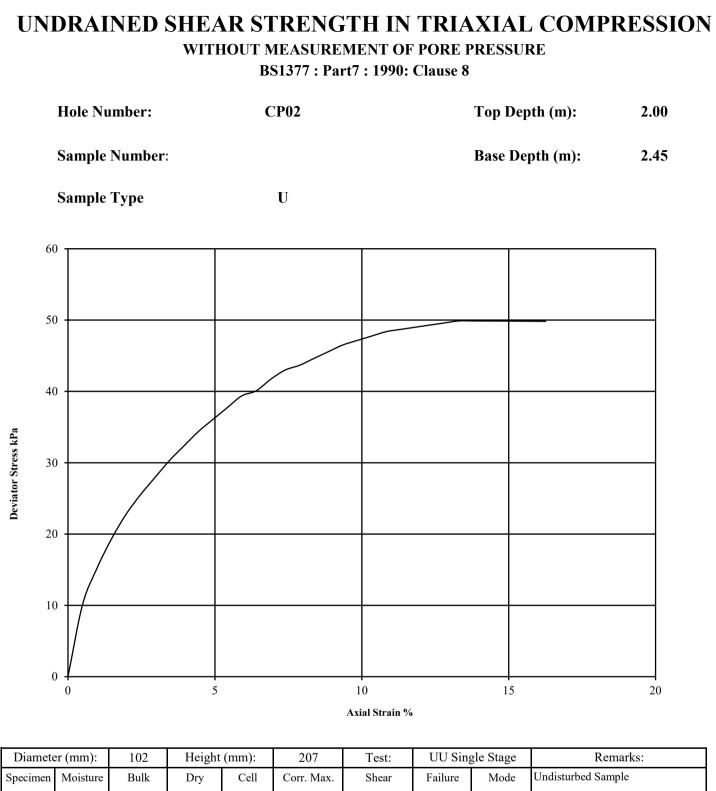
Professional Soils Laboratory


4043

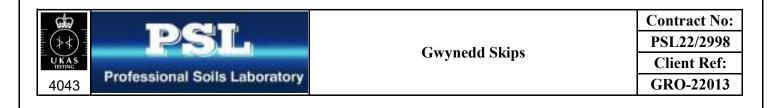
PARTICLE SIZE DISTRIBUTION TEST

BS1377 : Part 2 : 1990

Wet Sieve, Clause 9.2



Professional Soils Laboratory


4043

Client Ref:

GRO-22013

Specimen	Moisture	Bulk	Dry	Cell	Corr. Max.	Shear	Failure	Mode	Undisturbed Sample	
	Content	Density	Density	Pressure	Deviator	Strength	Strain	of	Sample taken from top of tube	
	(%)	(Mg/m3)	(Mg/m3)	(kPa)	Stress	Cu	(%)	Failure	Rate of strain = 2 %/min	
					(kPa)	(kPa)			Latex Membrane used 0.2 mm thick,	
				θ_3	$(\theta_1 - \theta_3)_f$	$^{1}/_{2}(\theta_{1}-\theta_{3})_{f}$			Correction applied 0.35	
1	13	2.28	2.01	40	50	25	13.3	Plastic	See summary of soil descriptions	I

SUMMARY OF LABORATORY HAND VANES

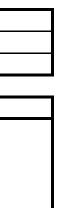
(BS1377 : PART 7 : 1990)

Hole Number	Sample Number	Sample Type	Top Depth m	Base Depth m	Moisture Content %	Peak Shear Strength kPa	Residual Shear Strength kPa	Remarks
CP03		U	3.00	3.45	16	62		
CP03		U	5.00	5.45	12	>150		

* This test is out of our UKAS scope

	Contract No:
Currend Skins	PSL22/2998
	Client Ref:
Professional Soils Laboratory	GRO-22013

APPENDIX 10 - Permanent Ground Gas Monitoring Results


GWYNEDD SKIPS GEO-ENVIRONMENTAL APPRAISAL GRO-22013-3516

PERMANENT GROUND GAS MONITORING FORM

SITE NAME:		GWYNEL	DD SKIPS		ENGI	NEER:		Josh Turton
CLIENT:	GV	VYNEDD HOL	DINGS LIMIT	ΈD	DA	TE:		13/04/2022
JOB NO:		GRO-2	22013					
Pressure Trend:	Rising	Weather:		Overcast		Equip	ment:	GFM 436
							_	
Ambient:	0 ₂ (%v/v)	CH ₄ (%v/v)	co ₂ (%v/v)	LEL	H ₂ S (ppm)	CO (ppm)		
Start	20.3	0.0	0.0	0.0	0.0	0.0		
Finish	20.4	0.0	0.0	0.0	0.0	0.0		

BH Ref.	Gas Flow	Rate (l/hr)	Borehole Pressure	Π	/lethane (%v/	′v)	Carbon Dio	xide (%v/v)	Oxyger	n (%v/v)	Hydrogen Su	lphide (ppm)	Carbon Mon	oxide (ppm)		$\mathbf{Q}_{hg} CH_4$	Atmos Press	PID (nnm)	Sheen (Y/N)	Depth to Water
	Peak	Steady	(mb)	Peak	Steady	LEL	Peak	Steady	Peak	Steady	Peak	Steady	Peak	Steady	(l/hr)	(I/nr)	(mb)	(ppm)		(m bgl)
CP05	0.0	0.0	0.00	0.0	0.0	0.0	0.1	0.1	20.3	20.3	0.0	0.0	0.0	0.0	0.0001	0.0000	1009	-	Ν	NA
WS04	0.0	0.0	0.00	0.0	0.0	0.0	2.0	0.7	17.2	19.9	0.0	0.0	0.0	0.0	0.0020	0.0000	1009	-	Ν	NGW
WS06	0.0	0.0	0.00	0.0	0.0	0.0	9.6	7.9	0.1	4.3	0.0	0.0	0.0	0.0	0.0096	0.0000	1009	-	Ν	1.40
WS08	0.0	0.0	0.00	0.0	0.0	0.0	2.4	1.8	18.2	19.0	0.0	0.0	0.0	0.0	0.0024	0.0000	1009	-	Ν	1.90
WS09	0.0	0.0	0.00	0.9	0.8	18.0	5.1	5.1	0.0	0.6	0.0	0.0	0.0	0.0	0.0051	0.0009	1009	-	Ν	1.34
WS13	0.0	0.0	0.00	0.0	0.0	0.0	2.8	1.7	16.5	18.5	0.0	0.0	0.0	0.0	0.0028	0.0000	1009	-	Ν	1.16
WS15	0.0	0.0	0.00	0.0	0.0	0.0	2.7	1.9	15.4	17.5	0.0	0.0	0.0	0.0	0.0027	0.0000	1009	-	Ν	0.63
Notes:																				

APPENDIX 11 - Commercial End Use Screening Values

GWYNEDD SKIPS GEO-ENVIRONMENTAL APPRAISAL GRO-22013-3516

Generic Tier I Generic Assessment Criteria	(GAC)				<u> </u>		GR	JUNDTECH
		1			1			Contract of the
Proposed End Use	Unit	Reside	ntial with Plant	Uptake		Commercial		Source
SOM	%	1	2.5	6	1	2.5	6	
Arsenic	mg/kg	32	32	32	640	640	640	SGVs
Beryllium	mg/kg	1.7	1.7	1.7	12	12	12	LQM S4ULs
Boron (water soluble)	mg/kg	290	290	290	240000	240000	240000	LQM S4ULs
Cadmium	mg/kg	10	10	10	230	230	230	SGVs
Chromium (Total)	mg/kg	910	910	910	8600	8600	8600	LQM S4ULs
Chromium (VI)	mg/kg	21	21	21	49	49	49	DEFRA C4SLs
Copper	mg/kg	2400	2400	2400	68000	68000	68000	LQM S4ULs
Lead	mg/kg	200	200	200	2300	2300	2300	DEFRA C4SLs
Organic Mercury	mg/kg	1.2	1.2	1.2	26	26	26	LQM S4ULs
Nickel	mg/kg	130	1.30	1.30	980	980	980	LQM S4ULs
Selenium	mg/kg	350	350	350	13000	13000	13000	SGVs
Vanadium	mg/kg	410	410	410	9000	9000	9000	LQM S4ULs
Zinc	mg/kg	3700	3700	3700	730000	730000	730000	LQIVI S4ULS
	iiig/kg	5700	5700	5700	730000	750000	750000	LQIVI J4ULS
Aliphatic EC 5 - 6	manthe	42	78	160	3200 (304) ^{sol}	5900 (558) ^{sol}	12000 (1150) sol	LQM S4ULs
	mg/kg	-				. ,		
Aliphatic EC 6 - 8	mg/kg	100	230	530	7800 (144) ^{sol}	17000 (322) ^{sol}	40000 (736) 501	LQM S4ULs
Aliphatic EC 8 - 10	mg/kg	27	65	150	2000 (78) ^{sol}	4800 (190) ^{sol}	11000 (451) ^{vap}	LQM S4ULs
Aliphatic EC 10 - 12	mg/kg	130 (48) ^{vap}	330 (118) ^{vap}	760 (283) vap	9700 (48) sol	23000 (118) ^{vap}	47000 (283) vap	LQM S4ULs
Aliphatic EC 12 - 16	mg/kg	1100 (24) ^{sol}	2400 (59) sol	4300 (142) ^{sol}	59000 (24) sol	82000 (59) ^{sol}	90000 (142) ^{sol}	LQM S4ULs
Aliphatic EC 16 - 35	mg/kg	65000 (8.48) ^{f,sol}	92000 (21) ^{f,sol}	110000 ^f	1600000 f	1700000 ^f	1800000 ^f	LQM S4ULs
Aliphatic EC 35 - 44	mg/kg	65000 (8.48) ^{f,sol}	92000 (21) ^{f,sol}	110000 ^f	1600000 f	1700000 ^f	1800000 ^f	LQM S4ULs
Aromatic EC 5 - 7	mg/kg	70	140	300	26000 (1220) ^{sol}	46000 (2260) ^{sol}	86000 (4710) ^{sol}	LQM S4ULs
Aromatic EC 7 - 8	mg/kg	130	290	660	56000 (869) ^{vap}	110000 (1920)	180000 (4360)	LQM S4ULs
Aromatic EC 8 - 10	mg/kg	34	83	190	3500 (613) ^{vap}	8100 (1500) ^{vap}	17000 (3580)	LQM S4ULs
Aromatic EC 10 - 12	mg/kg	74	180	380	16000 (364) sol	28000 (899) ^{sol}	34000 (2150) sol	LQM S4ULs
Aromatic EC 12 -16	mg/kg	140	330	660	36000 (169) sol	37000	38000	LQM S4ULs
Aromatic EC 16 - 21	mg/kg	260 f	540 ^f	930 ^f	28000 f	28000 f	28000 ^f	LQM S4ULs
Aromatic EC 21 - 35	mg/kg	1100 ^f	1500 ^f	1700 ^f	28000 ^f	28000 ^f	28000 ^f	LQM S4ULs
Aromatic EC 35 - 44	mg/kg	1100 ^f	1500 ^f	1700 ^f	28000 ^f	28000 ^f	28000 ^f	LQM S4ULs
Benzene	mg/kg	0.33	0.33	0.33	95	95	95	SGVs
Toluene	mg/kg	610	610	610	4400	4400	4400	SGVs
Ethyl Benzene	mg/kg	350	350	350	2800	2800	2800	SGVs
Xylene - o	mg/kg	250	250	250	2600	2600	2600	SGVs
Xylene - m	mg/kg	240	240	240	3500	3500	3500	SGVs
Xylene - p	mg/kg	230	230	230	3200	3200	3200	SGVs
MTBE (methyl tert-butyl ether)	mg/kg	49	84	160	7900	13000	24000	CL:AIRE 2010
	mg/ng	15	07	100	7500	10000	21000	010 1012 2010
Acenaphthene	mg/kg	210	510	1100	84000 (57) sol	97000 (141) ^{sol}	100000	LQM SAULs
Acenaphthylene	mg/kg	170	420	920	83000 (86.1) ^{sol}	97000 (141) 97000 (212) ^{sol}	100000	LQM S4ULs
Anthracene	mg/kg	2400	5400	11000	520000	540000	540000	LQM S4ULs
Benz(a)anthracene	mg/kg	7.2	11	11000	170	170	180	LQIVI S4ULS
Benzo(a)pyrene	mg/kg	2.2	2.7	5*	35	35	77*	DEFRA C4SL*/LQI
Benzo(b)fluoranthene			3.3	3.7	44	44	45	LQM S4ULs
Benzo(ghi)perylene	mg/kg	2.6 320	3.3	3.7	3900	44	45	LQIVI S4ULS
10 , , ,	mg/kg							
Benzo(k)fluoranthene	mg/kg	77	93	100	1200	1200	1200	LQM S4ULs
Chrysene	mg/kg	15	22	27	350	350	350	LQM S4ULs
Dibenz(ah)anthracene	mg/kg	0.24	0.28	0.3	3.5	3.6	3.6	LQM S4ULs
Fluoranthene	mg/kg	280	560	890	23000	23000	23000	LQM S4ULs
Fluorene	mg/kg	170	400	860	63000 (30.9) ^{sol}	68000	71000	LQM S4ULs
Indeno(123-cd)pyrene	mg/kg	27	36	41	500	510	510	LQM S4ULs
Naphthalene	mg/kg	2.3 f	5.6 f	13 f	190 ^f (76.4) ^{sol}	460 ^f (183) ^{sol}	1100 ^f (432) ^{sol}	LQM S4ULs
Phenanthrene	mg/kg	95	220	440	22000	22000	23000	LQM S4ULs
Pyrene	mg/kg	620	1200	2000	54000	54000	54000	LQM S4ULs

Generic Tier I Generic Assessment Criteria (GA			<u> </u>	ļ			GRU	DUNDTECH
eneric Tier I Generic Assessment Criteria (GAC	_)						60115	Contract of the last
	1			1				
Proposed End Use	Unit	Reside	ntial with Plant	Lintake		Commercial		Source
SOM	%	1	2.5	6	1	2.5	6	Jource
Phenol	mg/kg	420	420	420	3200	3200	3200	SGVs
Chlorophenols	mg/kg mg/kg	0.87 9	20	4.5	3500	4000	4300	LQM S4ULs
Pentachlorophenol	mg/kg	0.22	0.52	1.2	400	400	400	LQM S4ULs
Carbon disulphide	mg/kg	0.14	0.29	0.62	11	22	47	LQM S4ULs
	mg/kg	0.29	0.7	1.6	31	66	120	LQM S4ULs
1.1.1.2 Tetrachloroethane	mg/kg	1.6	3.4	7.5	270	550	1100	LQM S4ULs
1.1.1 Trichloroethane	mg/kg mg/kg	8.8	18	.39	660	1300	3000	LQM S4ULs
Trichloroethene	mg/kg mg/kg	0.016	0.034	0.075	1.2	2.6	5.7	LQM S4ULs
Tetrachoromethane (Carbon Tetrachloride)	mg/kg mg/kg	0.010	0.054	0.13	2.9	6.3	14	LQM S4ULs
2-Dichloroethane	mg/kg mg/kg	0.0071	0.011	0.019	0.67	0.97	1.7	LQM S4ULs
Chloroethene (Vinyl chloride)	mg/kg	0.00064	0.00087	0.0014	0.059	0.077	0.12	LQM S4ULs
Trichloromethane (Chloroform)	mg/kg	0.91	1.7	3.4	99	170	350	LQM S4ULs
Tetrachloroethene	mg/kg	0.18	0.39	0.9	19	42	95	LQM S4ULs
Jexachlorobenzene	mg/kg	1.8 (0.2) vap	3.3 (0.5) vap	4.9	110 (0.2) vap	120	120	LQM S4ULs
Pentachlorobenzene	mg/kg mg/kg	5.8	12	22	640 (43) sol	770 (107) sol	830	LQM S4ULs
1.2.4.5-Tetrachlorobenzene	mg/kg	0.33	0.77	1.6	42 (19.7) sol	72 (49.1) ^{sol}	96	LQM S4ULs
1.2.3.5-Tetrachlorobenzene	mg/kg	0.66	1.69	3.7	49 (39.4) vap	120 (98.1) vap	240 (235) vap	LQM S4ULs
1.2.3.4-Tetrachlorobenzene	mg/kg	15	.36	78	1700 (122) vap	3080 (304) vap	4400 (728) ^{vap}	LQM S4ULs
1.3.5-Trichlorobenzene	mg/kg	0.33	0.81	1.9	23	55	130	LQM S4ULs
2.4-Trichlorobenzene	mg/kg	2.6	6.4	15	220	530	1300	LQM S4ULs
1.2.3-Trichlorobenzene	mg/kg	1.5	3.6	8.6	102	250	590	LQM S4ULs
.4-dichlorobenzene	mg/kg	61 ^f	150 ^f	350 ^f	4400 ^f (224) ^{vap}	10000 ^f (540)	25000 ^f (1280)	LQM S4ULs
.3-dichlorobenzene	mg/kg	0.4	1	2.3	30	73	170	LQM S4ULs
.2-Dichlorobenzene	mg/kg	23	55	130	2000 (571) sol	4800 (1370) ^{sol}	11000 (3240) ^{sol}	LQM S4ULs
Thlorobenzene	mg/kg	0.46	1	2.4	56	130	290	LQM S4ULs
Gamma-Hexachlorocyclohexane	mg/kg	0.06	0.14	0.33	67	69	70	LQM S4ULs
Beta-Hexachlorocyclohexane	mg/kg	0.085	0.2	0.46	65	65	65	LQM S4ULs
Alpha -Hexachlorocyclohexane	mg/kg mg/kg	0.23	0.55	1.2	170	180	180	LQM S4ULs
Beta -Endosulfan	mg/kg mg/kg	7	17	39	6300 (0.00007)	7800 (0.0002)	8700	LQM S4ULs
Alpha-Endosulfan	mg/kg	7.4	18	41	5600 (0.003) vap	7400 (0.007) vap	8400 (0.016) vap	LQM S4ULs
Dichlorvos	mg/kg mg/kg	0.032	0.066	0.14	140	140	140	LQM S4ULs
Itrazine	mg/kg	3.3	7.6	17.4	9300	9400	9400	LQM S4ULs
Vieldrin	mg/kg mg/kg	0.97	2	3.5	170	170	170	LQM S4ULs
Idrin	mg/kg mg/kg	.5.7	6.6	7.1	170	170	170	LQM S4ULs
IMX	mg/kg mg/kg	5.7	13	26	110000	110000	110000	LQM S4ULs
2,4,6-Trinitrotoulene	mg/kg	1.6	3.7	8.1	1000	1000	1000	LQM S4ULs
RDX	mg/kg mg/kg	120	250	540	210000	210000	210000	LQM S4ULs

APPENDIX 12 – JIWG Receptor Tool

GWYNEDD SKIPS GEO-ENVIRONMENTAL APPRAISAL GRO-22013-3516

JIWG		
JIVG	Project Reference	GR0-22013
Joint Industry Working Group	Site Name	Gwynedd Skips
Asbestos in Soil and Construction & Demolition Materials	Client	Gwynedd Skip & Plant Hire
	Run by	LH
	Date	18-May-22
	Scenario details	

Decision Support Tool for CAR2012 Work Categories

<u>Stage 1</u> Hazard Factors		Score
Select ACM type (run model for each type to generate 'Worst Case' output)	Free dispersed fibres/fibre bundles	2
Extent of degradation of ACMs at outset of work	Disaggregated (dominated by loose fibrous material; extreme degradation in ACM and/or free asbestos fibres/fibre bundles)	4
Friability and degree of bonding by matrix (ACM matrix, not ground materials)	Friable ACM or ACM with fibres not linked in any matrix (free dispersed fibres/fibre bundles)	4
Distribution of Visible Asbestos Across Affected Area	No visible ACMs/fibre bundles	0
Amount of asbestos fibre in selected ACM/fibre type as % of host material	Very Low quantities - <0.001 to 0.01 %wt/wt	1
Sub-total	Note: the asbestos licensing regime is unaffected by the type of asbestos fibre present in ACMs	11
Hazard ranking		Medium

No warranty, expressed or implied, or reliance, is provided in relation to the use of this tool.

It is contingent on users to satisfy themselves that the output from the tool is relevant and appropriate to the assessment being made.

Score Anticipated airborne fibre concentration - Control Limit or SALI? <0.01 fibres/ml 1 Anticipated duration of exposure to asbestos < 2 hours in a 7 day period for all persons involved (e.g. Short Duration Work) 1 Low intensity, no or minimal deterioration expected Activity type and effect on deterioration of ACMs during work 0 Best description of primary host material matrix (soil/made ground) Coarse to Fine Gravel 3 Respirable fibre index for ACM - RIVM report 711701034 (2003) Low 2 Sub-total 7 Exposure ranking Low 18 Combined hazard and exposure ranking

Aspestos in Soli and Construction & Demolition Materials

Stage 3 Risk Assessment Outputs

Probable Licensing Status RPE* Dust Suppression** Hygiene/Decontamination***

 Non-Licensed Work

 EN149 type FFP3 disposable

 Manual/localised dust suppression

 Localised and basic personal decontamination facilities

*Where RPE has to be worn continuously for long periods (e.g. more than 1-hour), then powered RPE may be necessary. **Reduction in control measures possible if natural mitigation factors are present (e.g. raining, wet ground) ***Guide only; suitability of selected personal hygiene measures may be reviewed on a site/contamination-specific basis

Decision Support Tool for Receptor Risk Ranking

Stage 1 Hazard Identification		Score
Select ACM type (run model for each type to generate 'Worst Case' output)	Free dispersed fibres/fibre bundles	2
Extent of degradation of ACMs	Disaggregated (dominated by loose fibrous material; extreme degradation in ACM and/or free asbestos fibres/fibre bundles)	4
Friability and degree of bonding by matrix (ACM matrix, not ground materials)	Friable ACM or ACM with fibres not linked in any matrix (free dispersed fibres/fibre bundles)	4
Distribution of Visible Asbestos Across Affected Area	No visible ACMs/fibre bundles	0
Asbestos fibre type	Chrysotile alone	0
Sub-total		10
Hazard ranking		Low

No warranty, expressed or implied, or reliance, is provided in relation to the use of this tool.

It is contingent on users to satisfy themselves that the output from the tool is relevant and appropriate to the assessment being made.

© Joint Industry Working Group, ©CL:AIRE Version 2, February 2017 Page 1 of 4

JIWG Joint Industry Working Group Addention in Self and Construction & Demotifion Materials

Stage 2 **Emission Factors** Score Amount of asbestos fibre in selected ACM/fibre type as % of host material Very Low quantities - 0.001 to 0.01 %wt/wt 1 Respirable fibre index for ACM - RIVM report 711701034 (2003) Low 2 Activity type and effect on deterioration of ACMs Minimal disturbance, no deterioration expected 1 Best description of primary host material matrix Coarse to Fine Gravel 3 Sub-total 7 Exposure ranking Low

Page 2 of 4

JIWG Joint Industry Working Group Asbestos in Soil and Construction & Demolition Materials

Stage 3 Pathway and Receptor Sensitivity		Score	
Receptor category	Commercial/industrial	No score required	
Age of Receptor	Adult (>24 and <60)	1	
Duration of exposure/site occupancy	> 1hr <10 hr daily exposure (e.g. part-time to full time occupational exposure or extended daily recreational exposure)	3	
Receptor ranking		4	Low
Combined hazard, exposure and receptor ranking			Low
Pathway: Distance of Receptor from Source	In or within 10m of area of disturbance	4	
	In or within 10m of area of disturbance Material buried at depth, unlikely to be disturbed except for deeper construction related excavation	4 B	
Pathway: Distance of Receptor from Source Pathway: Depth to impacted material Pathway ranking			Very Low
Pathway: Depth to impacted material		В	Very Low

© Joint Industry Working Group, ©CL:AIRE Version 2, February 2017 Page 3 of 4

APPENDIX 13 - Waste Classification Report

GWYNEDD SKIPS GEO-ENVIRONMENTAL APPRAISAL GRO-22013-3516

HazWasteOnline[™]

Waste Classification Report

HazWasteOnline[™] classifies waste as either **hazardous** or **non-hazardous** based on its chemical composition, related legislation and the rules and data defined in the current UK or EU technical guidance (Appendix C) (note that HP 9 Infectious is not assessed). It is the responsibility of the classifier named below to:

- a) understand the origin of the waste
- b) select the correct List of Waste code(s)

- d) select and justify the chosen metal species (Appendix B)
- e) correctly apply moisture correction and other available corrections
- f) add the meta data for their user-defined substances (Appendix A)

Company:

Leigh

WN7 3XJ

Greenfold Way

Groundtech Consulting Limited First Floor, Lloyd House, Orford Court,

g) check that the classification engine is suitable with respect to the national destination of the waste (Appendix C)

To aid the reviewer, the laboratory results, assumptions and justifications managed by the classifier are highlighted in pale yellow.

Job name

EMT-22-4931-Batch-1-202204081545

Description/Comments

Project GRO-22013

Name:

Date:

Telephone:

01618 201368

Classified by

Bradley Massey

11 May 2022 13:18 GMT

Site Gwynedd Skips

HazWasteOnline™ provides a two day, hazardous waste classification course that covers the use of the software and both basic and advanced waste classification techniques. Certification has to be renewed every 3 years.

HazWasteOnline[™] Certification:

Course Hazardous Waste Classification

Job summary

#	Sample name	Depth [m]	Classification Result	Hazard properties	Page
1	WS01-15/03/2022-0.20m		Non Hazardous	· ·	3
2	WS02-15/03/2022-0.50m		Non Hazardous		5
3	WS03-15/03/2022-0.50m		Non Hazardous		11
4	WS04-17/03/2022-0.80m		Non Hazardous		13
5	WS05-17/03/2022-0.20m		Non Hazardous		15
6	WS06-17/03/2022-0.60m		Non Hazardous		17
7	WS07-17/03/2022-0.20m		Non Hazardous		23
8	WS08-15/03/2022-0.20m		Non Hazardous		25
9	WS09-15/03/2022-0.60m		Non Hazardous		27
10	WS10-15/03/2022-0.50m		Non Hazardous		29
11	WS11-15/03/2022-0.20m		Non Hazardous		31
12	WS12-15/03/2022-0.60m		Non Hazardous		37
13	WS13-16/03/2022-0.50m		Non Hazardous		39
14	WS14-16/03/2022-0.20m		Non Hazardous		45
15	WS15-16/03/2022-0.60m		Non Hazardous		51
16	WS16-16/03/2022-0.25m		Non Hazardous		53
17	WS17-16/03/2022-0.30m		Non Hazardous		55
18	WS18-17/03/2022-0.60m		Non Hazardous		57
19	WS15-18/03/2022-1.70m		Non Hazardous		59
20	WS02-15/03/2022-1.50m		Non Hazardous		60
21	WS07-17/03/2022-1.70m		Non Hazardous		61
22	WS05-17/03/2022-2.00m		Non Hazardous		62
23	WS13-1.00m		Non Hazardous		63
24	WS14-17/03/2022-1.50m		Non Hazardous		64
25	WS17-16/03/2022-1.80m		Non Hazardous		65

Related documents

#	Name	Description
1	EMT-22-4931-Batch-1-202204081545.HWOL	hwol file used to create the Job
2	Example waste stream template for contaminated soils	waste stream template used to create this Job

Date

Report

Created by: Bradley Massey

Created date: 11 May 2022 13:18 GMT

Appendices	Page
Appendix A: Classifier defined and non EU CLP determinands	66
Appendix B: Rationale for selection of metal species	70
Appendix C: Version	70

Classification of sample: WS01-15/03/2022-0.20m

Sample details

Sample name: WS01-15/03/2022-0.20m LoW Code: Chapter:

Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites) 17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 0% No Moisture Correction applied (MC)

#			Determinand		CLP Note	User entered	data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
		EU CLP index number	EC Number	CAS Number	CLP			lation			Value		
1	4	arsenic { arsenic tr				3.5	mg/kg	1.32	4.621	mg/kg	0.000462 %		
			215-481-4	1327-53-3	-								
2	4	cadmium { cadmiu 048-002-00-0	<mark>m oxide</mark> } 215-146-2	1306-19-0	-	<0.1	mg/kg	1.142	<0.114	mg/kg	<0.0000114 %		<lod< td=""></lod<>
3	4	chromium in chrom <mark>oxide (worst case)</mark>	hium(III) compounds }	{ [•] chromium(III)	_	62.6	mg/kg	1.462	91.493	mg/kg	0.00915 %		
			215-160-9	1308-38-9									
4	4	compounds, with the of compounds spectrum of compounds spectrum of the spectru	nium(VI) compounds ne exception of barin cified elsewhere in t	um chromate and	_	<0.3	mg/kg	2.27	<0.681	mg/kg	<0.0000681 %		<lod< th=""></lod<>
		024-017-00-8			-							-	
5	4		<mark>oxide; copper (I) oxi</mark> 215-270-7	de } 1317-39-1	-	22	mg/kg	1.126	24.77	mg/kg	0.00248 %		
	2	lead { lead chroma		1317-39-1									
6	~		231-846-0	7758-97-6	1	8	mg/kg	1.56	12.479	mg/kg	0.0008 %		
7	4	mercury { mercury	dichloride }			<0.1	ma/ka	1.353	<0.135	mg/kg	<0.0000135 %		<lod< th=""></lod<>
Ľ		080-010-00-X	231-299-8	7487-94-7			ing/kg	1.000	\$0.100	ing/kg			
8	4	nickel { nickel chro				31.6	mg/kg	2.976	94.05	mg/kg	0.0094 %		
			238-766-5	14721-18-7									
9	4	selenium { nickel s 028-031-00-5	239-125-2	15060-62-5		<1	mg/kg	2.554	<2.554	mg/kg	<0.000255 %		<lod< th=""></lod<>
	æ	zinc { zinc chromat		10000 02 0									
10	*	024-007-00-3	236-878-9	13530-65-9		86	mg/kg	2.774	238.577	mg/kg	0.0239 %		
11	9	рН		PH		8.8	pН		8.8	рН	8.8 pH		
12		naphthalene				<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< th=""></lod<>
Ľ		601-052-00-2	202-049-5	91-20-3									
13	•	acenaphthylene				<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< th=""></lod<>
<u> </u>			205-917-1	208-96-8	-								
14	8	acenaphthene	201-469-6	83-32-9		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
15		fluorene		00 02 0		-0.04			.0.04		.0.00004.0/		
15			201-695-5	86-73-7		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< th=""></lod<>
16	0	phenanthrene				<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< th=""></lod<>
Ľ			201-581-5	85-01-8									
17	0	anthracene	204-371-1	120-12-7		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< th=""></lod<>
			204-371-1	120-12-1									

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
18	Θ	fluoranthene	205-912-4	206-44-0		<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< th=""></lod<>
19	۲	pyrene	204-927-3	129-00-0		<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
20		benzo[a]anthracen 601-033-00-9	e 200-280-6	56-55-3		<0.06	mg/kg		<0.06	mg/kg	<0.000006 %		<lod< td=""></lod<>
21		chrysene 601-048-00-0	205-923-4	218-01-9		<0.02	mg/kg		<0.02	mg/kg	<0.000002 %		<lod< td=""></lod<>
22		benzo[b]fluoranthe 601-034-00-4	ne 205-911-9	205-99-2		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
23		benzo[k]fluoranthei 601-036-00-5	ne 205-916-6	207-08-9		<0.02	mg/kg		<0.02	mg/kg	<0.000002 %		<lod< td=""></lod<>
24		benzo[a]pyrene; be 601-032-00-3	enzo[def]chrysene 200-028-5	50-32-8		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
25	8	indeno[123-cd]pyre		193-39-5		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
26		dibenz[a,h]anthrac		53-70-3		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
27		benzo[ghi]perylene		191-24-2		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
		1	1						Total:	0.0466 %	Г	1	

Key

	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Classification of sample: WS02-15/03/2022-0.50m

Sample details

Sample name: WS02-15/03/2022-0.50m LoW Code: Chapter:

Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites) 17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 0% No Moisture Correction applied (MC)

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	4	arsenic { arsenic tr 033-003-00-0	<mark>ioxide</mark>	1327-53-3		21.4	mg/kg	1.32	28.255	mg/kg	0.00283 %		
2	4	cadmium { cadmiu 048-002-00-0				<0.1	mg/kg	1.142	<0.114	mg/kg	<0.0000114 %		<lod< td=""></lod<>
3	4		nium(III) compounds	1306-19-0 {		131.1	mg/kg	1.462	191.61	mg/kg	0.0192 %		
4	4	compounds, with the	nium(VI) compounds ne exception of barin cified elsewhere in t	s { chromium (VI) um chromate and		<0.3	mg/kg	2.27	<0.681	mg/kg	<0.0000681 %		<lod< th=""></lod<>
5	4		D <mark>oxide; copper (I) oxic</mark> 215-270-7	l <mark>de</mark> } 1317-39-1		12	mg/kg	1.126	13.511	mg/kg	0.00135 %		
6	4	lead { lead chroma 082-004-00-2		7758-97-6	1	20	mg/kg	1.56	31.196	mg/kg	0.002 %		
7	~			7487-94-7		0.1	mg/kg	1.353	0.135	mg/kg	0.0000135 %		
8	4			14721-18-7		21.2	mg/kg	2.976	63.097	mg/kg	0.00631 %		
9	4	selenium { nickel s 028-031-00-5	elenate } 239-125-2	15060-62-5	-	2	mg/kg	2.554	5.108	mg/kg	0.000511 %		
10	~	zinc { zinc chromat 024-007-00-3	<mark>e</mark> } 236-878-9	13530-65-9		52	mg/kg	2.774	144.256	mg/kg	0.0144 %		
11	۲	TPH (C6 to C40) p	etroleum group	ТРН		<38	mg/kg		<38	mg/kg	<0.0038 %		<lod< td=""></lod<>
12		tert-butyl methyl et 2-methoxy-2-methy 603-181-00-X		1634-04-4		<0.002	mg/kg		<0.002	mg/kg	<0.0000002 %		<lod< th=""></lod<>
13		benzene 601-020-00-8	200-753-7	71-43-2		<0.003	mg/kg		<0.003	mg/kg	<0.000003 %		<lod< td=""></lod<>
14		toluene 601-021-00-3	203-625-9	108-88-3		<0.003	mg/kg		<0.003	mg/kg	<0.000003 %		<lod< td=""></lod<>
15	٥	ethylbenzene 601-023-00-4	202-849-4	100-41-4		<0.003	mg/kg		<0.003	mg/kg	<0.000003 %		<lod< td=""></lod<>
16		xylene 601-022-00-9	202-422-2 [1] 203-396-5 [2]	95-47-6 [1] 106-42-3 [2]		<0.013	mg/kg		<0.013	mg/kg	<0.0000013 %		<lod< td=""></lod<>

#			Determinand		CLP Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
		EU CLP index number	EC Number	CAS Number	CLF							MC	
			203-576-3 [3] 215-535-7 [4]	108-38-3 [3] 1330-20-7 [4]									
17		рН				7.22	pН		7.22	pН	7.22 pH		
				PH		,							
18		naphthalene	000 040 5	64.00.0		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
-		601-052-00-2 acenaphthylene	202-049-5	91-20-3	-							-	
19	۲		205-917-1	208-96-8		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
20	0	acenaphthene	201-469-6	83-32-9		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
21		fluorene				<0.01	mg/kg		<0.01	mg/kg	<0.000001 %	È	<lod< td=""></lod<>
			201-695-5	86-73-7	1	<0.01						_	
22	۲	phenanthrene	201-581-5	85-01-8		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
23	8	anthracene	204-371-1	120-12-7		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
	8	fluoranthene	204 071 1	120 12 1	+	0.04			0.04		0.000004.8/	t	1.00
24			205-912-4	206-44-0		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
25	0	pyrene	204-927-3	129-00-0		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
26		benzo[a]anthracen 601-033-00-9				<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
27		chrysene	200-280-6	56-55-3	+	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %	h	<lod< td=""></lod<>
_		601-048-00-0	205-923-4	218-01-9									
28		benzo[b]fluoranthe		605.00.0		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
-		601-034-00-4 benzo[k]fluoranthe	205-911-9	205-99-2	-							-	
29		601-036-00-5	205-916-6	207-08-9		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
30		benzo[a]pyrene; be				<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
-		601-032-00-3 indeno[123-cd]pyre	200-028-5 ene	50-32-8	-								
31			205-893-2	193-39-5		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
32		dibenz[a,h]anthrac				<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
		601-041-00-2	200-181-8	53-70-3								-	
33	۲	benzo[ghi]perylene	e 205-883-8	191-24-2		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
34		phenol			╞	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
		604-001-00-2	203-632-7	108-95-2	-							-	
35	8	1,1-dichloroethane	203-458-1,	107-06-2, 75-34-3		<0.007	mg/kg		<0.007	mg/kg	<0.0000007 %		<lod< td=""></lod<>
		tetrachloroethylene	200-863-5 e		-						0.0000000000000000000000000000000000000	-	
36		602-028-00-4	204-825-9	127-18-4		<0.003	mg/kg		<0.003	mg/kg	<0.000003 %		<lod< td=""></lod<>
37			le; tetrachlorometh			<0.004	mg/kg		<0.004	mg/kg	<0.0000004 %		<lod< td=""></lod<>
<u> </u>		602-008-00-5	200-262-8	56-23-5	_							_	
38		trichloroethylene; t 602-027-00-9	201-167-4	79-01-6	-	<0.003	mg/kg		<0.003	mg/kg	<0.000003 %		<lod< td=""></lod<>
39		vinyl chloride; chlo		ט־וט־ט		<0.002	mg/kg		<0.002	ma/ka	<0.000002 %		<lod< td=""></lod<>
		602-023-00-7	200-831-0	75-01-4	1	<0.00Z	ing/kg		NO.002		<0.000002 /0		
40		hexachlorobenzen 602-065-00-6	e 204-273-9	118-74-1	-	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
41	0	dichlorodifluorome	thane		Ţ	<0.002	mg/kg		<0.002	mg/kg	<0.000002 %		<lod< td=""></lod<>
\vdash		chloromethane; m	200-893-9 ethyl chloride	75-71-8	+							-	
42		602-001-00-7	200-817-4	74-87-3		<0.003	mg/kg		<0.003	mg/kg	<0.000003 %		<lod< td=""></lod<>
43		bromomethane; m 602-002-00-2	ethylbromide 200-813-2	74-83-9		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
44		chloroethane				<0.002	mg/kg		<0.002	mg/kg	<0.000002 %		<lod< td=""></lod<>
		602-009-00-0	200-830-5	75-00-3									

#			Determinand		CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
		EU CLP index number	EC Number	CAS Number	CLP		1 actor		value	MC /	Useu
45	8	trichlorofluorometh	ane 200-892-3	75-69-4		<0.002 mg/kg		<0.002 mg/kg	<0.000002 %		<lod< td=""></lod<>
40			e; vinylidene chlorid			0.000 //		0.000 (H	
46				75-35-4		<0.006 mg/kg		<0.006 mg/kg	<0.0000006 %		<lod< td=""></lod<>
47		dichloromethane; n	nethylene chloride			<0.007 mg/kg		<0.007 mg/kg	<0.000007 %		<lod< td=""></lod<>
47		602-004-00-3	200-838-9	75-09-2		<0.007 mg/kg		<0.007 mg/kg	<0.0000007 %		<lod< td=""></lod<>
48	8	2,2-dichloropropan	e 209-832-0	594-20-7		<0.004 mg/kg		<0.004 mg/kg	<0.0000004 %		<lod< td=""></lod<>
49		bromochlorometha		001201	1	-0.002 malka		-0.002 ma/ka	.0.0000002.0/	F	<lod< td=""></lod<>
49			200-826-3	74-97-5		<0.003 mg/kg		<0.003 mg/kg	<0.000003 %		<lod< td=""></lod<>
50		chloroform; trichlor	omethane			<0.003 mg/kg		<0.003 mg/kg	<0.000003 %		<lod< td=""></lod<>
		602-006-00-4	200-663-8	67-66-3		<0.000 mg/ng					.205
51		1,1,1-trichloroethar	ne; methyl chlorofori	m		<0.003 mg/kg		<0.003 mg/kg	<0.000003 %		<lod< td=""></lod<>
		602-013-00-2	200-756-3	71-55-6							_
52		1,1-dichloropropen				<0.003 mg/kg		<0.003 mg/kg	<0.000003 %		<lod< td=""></lod<>
				563-58-6							
53			e; propylene dichlor			<0.006 mg/kg		<0.006 mg/kg	<0.0000006 %		<lod< td=""></lod<>
			201-152-2	78-87-5							
54		dibromomethane				<0.003 mg/kg		<0.003 mg/kg	<0.000003 %		<lod< td=""></lod<>
			200-824-2	74-95-3							
55	۲	bromodichlorometh		75-27-4		<0.003 mg/kg		<0.003 mg/kg	<0.000003 %		<lod< td=""></lod<>
			e; [1] (Z)-1,3-dichlor		-						
56				542-75-6 [1]		<0.004 mg/kg		<0.004 mg/kg	<0.0000004 %		<lod< td=""></lod<>
			208-826-5 [1] 233-195-8 [2]	10061-01-5 [2]		, server ingrig		101001	1010000001.70		
		trans-1,3-dichlorop				0.000 //		0.000 //			1.05
57		•	431-460-4	10061-02-6	-	<0.003 mg/kg		<0.003 mg/kg	<0.000003 %		<lod< td=""></lod<>
		1,1,2-trichloroethar				0.000 #		0.000 "			1.05
58			201-166-9	79-00-5		<0.003 mg/kg		<0.003 mg/kg	<0.000003 %		<lod< td=""></lod<>
59		1,3-dichloropropan	e			.0.002 mallia		.0.002 malka	.0.000002.0/		<lod< td=""></lod<>
59			205-531-3	142-28-9		<0.003 mg/kg		<0.003 mg/kg	<0.000003 %		<lod< td=""></lod<>
60		dibromochlorometh	hane			<0.003 mg/kg		<0.003 mg/kg	<0.000003 %		<lod< td=""></lod<>
00			204-704-0	124-48-1		<0.000 mg/kg		<0.000 mg/kg	<0.0000003 /8		LOD
61		1,2-dibromoethane				<0.003 mg/kg		<0.003 mg/kg	<0.000003 %		<lod< td=""></lod<>
<u> </u>		602-010-00-6	203-444-5	106-93-4							
62		chlorobenzene				<0.003 mg/kg		<0.003 mg/kg	<0.000003 %		<lod< td=""></lod<>
		602-033-00-1	203-628-5	108-90-7							
63	Θ	1,1,1,2-tetrachloroe				<0.003 mg/kg		<0.003 mg/kg	<0.000003 %		<lod< td=""></lod<>
L			211-135-1	630-20-6	_						
64		bromoform; tribrom				<0.003 mg/kg		<0.003 mg/kg	<0.000003 %		<lod< td=""></lod<>
<u> </u>			200-854-6	75-25-2	-					H	
65		1,1,2,2-tetrachloroe 602-015-00-3	201-197-8	79-34-5		<0.003 mg/kg		<0.003 mg/kg	<0.000003 %		<lod< td=""></lod<>
66		bromobenzene				.0.000 mallia		.0.000 mallia	.0.000002.0/		
66		602-060-00-9	203-623-8	108-86-1	1	<0.002 mg/kg		<0.002 mg/kg	<0.000002 %		<lod< td=""></lod<>
67		1,2,3-trichloropropa	ane			<0.004 mg/kg		<0.004 mg/kg	<0.0000004 %		<lod< td=""></lod<>
		602-062-00-X	202-486-1	96-18-4		<0.004 mg/kg		<0.004 mg/kg	<0.000004 /8		
68		mesitylene; 1,3,5-tr	imethylbenzene			<0.003 mg/kg		<0.003 mg/kg	<0.000003 %		<lod< td=""></lod<>
		601-025-00-5	203-604-4	108-67-8	1						
69	۲	tert-butylbenzene				<0.005 mg/kg		<0.005 mg/kg	<0.0000005 %		<lod< td=""></lod<>
Ĺ			202-632-4	98-06-6							
70		1,2,4-trimethylbenz				<0.006 mg/kg		<0.006 mg/kg	<0.0000006 %		<lod< td=""></lod<>
			202-436-9	95-63-6		5.15		3.49		\square	
71		sec-butylbenzene				<0.004 mg/kg		<0.004 mg/kg	<0.0000004 %		<lod< td=""></lod<>
			205-227-0	135-98-8	-					\vdash	
72	•	4-isopropyltoluene	202-796-7	99-87-6	-	<0.004 mg/kg		<0.004 mg/kg	<0.0000004 %		<lod< td=""></lod<>
70		1,3-dichlorbenzene		*	1	.0.004 "		.0.004	.0.0000001.0/		1.02
73			208-792-1	541-73-1	1	<0.004 mg/kg		<0.004 mg/kg	<0.0000004 %		<lod< td=""></lod<>
				۸	-						

#			Determinand		CLP Note	User entered	d data	Conv. Factor	Compound	conc.	Classification value	Applied	Conc. Not Used
		EU CLP index number	EC Number	CAS Number	CLP			Factor			value	MC /	Used
74		1,4-dichlorobenzen 602-035-00-2	ne; p-dichlorobenze 203-400-5	ne 106-46-7		<0.004	mg/kg		<0.004	mg/kg	<0.0000004 %		<lod< td=""></lod<>
75	۵	n-butylbenzene	203-209-7	104-51-8		<0.004	mg/kg		<0.004	mg/kg	<0.0000004 %		<lod< td=""></lod<>
76		1,2-dichlorobenzen 602-034-00-7	ne; o-dichlorobenze 202-425-9	ne 95-50-1		<0.004	mg/kg		<0.004	mg/kg	<0.0000004 %		<lod< td=""></lod<>
77		1,2-dibromo-3-chlo 602-021-00-6	ropropane 202-479-3	96-12-8		<0.004	mg/kg		<0.004	mg/kg	<0.0000004 %		<lod< td=""></lod<>
78		1,2,4-trichlorobenz 602-087-00-6	ene 204-428-0	120-82-1		<0.007	mg/kg		<0.007	mg/kg	<0.000007 %		<lod< td=""></lod<>
79	۲	hexachlorobutadier	ne 201-765-5	87-68-3		<0.004	mg/kg		<0.004	mg/kg	<0.0000004 %		<lod< td=""></lod<>
80	0	1,2,3-trichlorobenz		87-61-6		<0.007	mg/kg		<0.007	mg/kg	<0.000007 %	1	<lod< td=""></lod<>
81		styrene 601-026-00-0	202-851-5	100-42-5		<0.003	mg/kg		<0.003	mg/kg	<0.000003 %		<lod< td=""></lod<>
] 3-chlorophenol; [3]									
82		604-008-00-0	202-433-2 [1] 203-402-6 [2] 203-582-6 [3] 246-691-4 [4]	95-57-8 [1] 106-48-9 [2] 108-43-0 [3] 25167-80-0 [4]		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
83	Θ	2-nitrophenol	201-857-5	88-75-5		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
84		2,4-dichlorophenol 604-011-00-7	204-429-6	120-83-2		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %	1	<lod< td=""></lod<>
85		[4] 2,6-xylenol; [5] 3 604-006-00-X		enol; [3] 2,3-xylenol; ,5)-xylenol [7] 95-65-8 [1] 95-87-4 [2] 105-67-9 [3] 526-75-0 [4] 576-26-1 [5] 1300-71-6 [6] 71975-58-1 [7]	-	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
86		2,4,5-trichlorophen 604-017-00-X	ol 202-467-8	95-95-4		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
87		2,4,6-trichlorophen 604-018-00-5	ol 201-795-9	88-06-2		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
88			oro-m-cresol; 4-chlo 200-431-6	59-50-7		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
89		4-nitrophenol; p-nit 609-015-00-2	rophenol 202-811-7	100-02-7		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
90		pentachlorophenol 604-002-00-8	201-778-6	87-86-5		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
91	۵	2-chloronaphthaler	ne 202-079-9	91-58-7		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
92	8	2-methyl naphthale	ene 202-078-3	91-57-6		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
93		bis(2-ethylhexyl) ph DEHP 607-317-00-9	nthalate; di-(2-ethyl 204-211-0	1		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
94		BBP; benzyl butyl p		85-68-7		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
95		dibutyl phthalate; D		84-74-2		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
96	0	di-n-octyl phthalate		117-84-0		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
97	0	diethyl phthalate	201-550-6	84-66-2		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
98	8	dimethyl phthalate	205-011-6	131-11-3		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>

Page 8 of 71

~	EU CLP index	EC Number	CAS Number	CLP Note	User entered	l data	Conv. Factor	Compound c	onc.	Classification value	C Applied	Conc. Not Used
~	number	Londinoor		d							MC	
99 je	2,4-dinitrotoluene;	[1] dinitrotoluene [2	2]									
	609-007-00-9	204-450-0 [1] 246-836-1 [2]	121-14-2 [1] 25321-14-6 [2]		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
00	2,6-dinitrotoluene	210-106-0	606-20-2		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
101 🔍	4-bromophenylphe	nylether 202-952-4	101-55-3		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
102	4-chloroaniline				<0.01	mg/kg		<0.01	mg/kg	<0.000001 %	Ħ	<lod< td=""></lod<>
	612-137-00-9	203-401-0	106-47-8	-								
103 🔍	4-chlorophenylphe	230-281-7	7005-72-3	-	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
\rightarrow	azobenzene	230-201-7	1003-12-3	+								
04	611-001-00-6	203-102-5	103-33-3		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
105 📍	bis(2-chloroethoxy)	methane	111-91-1		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
106	bis(2-chloroethyl) e	203-870-1	111-44-4		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
	carbazole	201-696-0	86-74-8		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %	Ħ	<lod< td=""></lod<>
108 .	dibenzofuran	1			<0.01	mg/kg		<0.01	mg/kg	<0.000001 %	H	<lod< td=""></lod<>
\rightarrow		205-071-3	132-64-9	-								
109	hexachlorocyclope	201-029-3	77-47-4		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
10 🔍	hexachloroethane	200-666-4	67-72-1	_	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
	3,5,5-trimethylcyclo		l									
	606-012-00-8	201-126-0	78-59-1	-	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
112	nitrosodipropylamii				<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
	nitrobenzene	210-698-0	621-64-7									
113	609-003-00-7	202-716-0	98-95-3	-	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
	1,2-dichloroethyler trans-dichloroethyle	e; [1] cis-dichloroe										
	602-026-00-3	208-750-2 [1] 205-859-7 [2] 205-860-2 [3]	540-59-0 [1] 156-59-2 [2] 156-60-5 [3]	_	<0.006	mg/kg		<0.006	mg/kg	<0.0000006 %		<lod< td=""></lod<>
	cumene; [1] propyl	benzene [2]		1								
115	601-024-00-X	202-704-5 [1] 203-132-9 [2]	98-82-8 [1] 103-65-1 [2]		<0.007	mg/kg		<0.007	mg/kg	<0.000007 %		<lod< td=""></lod<>
	2-chlorotoluene; [1 [3] chlorotoluene [4											
116	602-040-00-X	202-424-3 [1] 203-580-5 [2] 203-397-0 [3] 246-698-2 [4]	95-49-8 [1] 108-41-8 [2] 106-43-4 [3] 25168-05-2 [4]	-	<0.006	mg/kg		<0.006	mg/kg	<0.0000006 %		<lod< td=""></lod<>
	m-cresol; [1] o-cres	sol; [2] p-cresol; [3]	mix-cresol [4]									
117	604-004-00-9	203-577-9 [1] 202-423-8 [2] 203-398-6 [3] 215-293-2 [4]	108-39-4 [1] 95-48-7 [2] 106-44-5 [3] 1319-77-3 [4]		<0.02	mg/kg		<0.02	mg/kg	<0.000002 %		<lod< td=""></lod<>
	o-nitroaniline; [1] m 612-012-00-9	n-nitroaniline; [2] p - 201-855-4 [1] 202-729-1 [2]	nitroaniline [3] 88-74-4 [1] 99-09-2 [2] 100-01-6 [3]	• •	<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
		202-810-1 [3]	r 1						Total:	0.0506 %	μ	

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
ND	Not detected
CLP: Note 1	Only the metal concentration has been used for classification

Classification of sample: WS03-15/03/2022-0.50m

Sample details

Sample name: WS03-15/03/2022-0.50m LoW Code: Chapter:

Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites) 17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 0% No Moisture Correction applied (MC)

1 033-0 2 Cadra outling 3 chron oxide 3 chron oxide 4 chron oxide 5 chron oxide 6 lead 082-0 082-0 8 nicke 028-0 9	le (worst case) omium in chron	215-481-4 <mark>m oxide</mark>	1327-53-3 1306-19-0 ; { [©] chromium(III)	_	52.6	mg/kg	1.32	69.449				1 1
2 3 cadro 3 chror 3 chror 4 chror 5 chror 024-0 5 copp 029-0 6 lead 082-0 7 sincke 028-0 9 seler 028-0 9 seler 028-0 0	mium { cadmiu 002-00-0 omium in chron de (worst case) omium in chron	<mark>m oxide</mark> } 215-146-2 nium(III) compounds }	1306-19-0	_				09.449	mg/kg	0.00694 %		
2 048-0 3 chron 3 chron comp of co 024-0 5 copp 029-0 6 lead 082-0 7 cmrc 08 nicke 028-0 9 seler 028-0 9 seler 028-0 024-0 0 024-0 024-0 024-0 0 024-0 0 0 0 0 0 0 0 0 0 0 0 0 0	002-00-0 pmium in chron de (worst case) pmium in chron	215-146-2 nium(III) compounds }		_								
3 chron oxide 4 chron comport or comport of compor	omium in chron <mark>le (worst case)</mark> omium in chron	hium(III) compounds }			<0.1	ma/ka	1.142	<0.114	ma/ka	<0.0000114 %		<lod< th=""></lod<>
3 oxide 4 chron composition of compositio of compositio of composition of composition of comp	le (worst case) omium in chron	}	; { ^e <mark>chromium(III)</mark>	-				-	5.5			_
4 comp of co 024-0 5 copp 029-0 6 lead 082-0 7 copp 029-0 8 copp 029-0 8 copp 029-0 08-0 08-0 08-0 028-0 028-0 9 copp 029-0 028-0 9 copp 029-0 0 8 copp 0 8 copp 0 8 2 8 copp 0 8 copp 0 8 copp 0 8 copp 0 8 copp 0 8 copp 0 8 copp 0 8 copp 0 8 copp 0 8 copp 0 8 copp 0 8 copp 0 8 copp 0 8 copp 0 8 copp 0 8 copp 0 8 copp 0 8 copp 0 8 copp 0 2 0 8 copp 0 8 2 8 2 8 2 8 2 8 8 2 8 8 8 8 8 8 8 8		215-160-9	4000.00.0		62.3	mg/kg	1.462	91.055	mg/kg	0.00911 %		
4 comp of co 024-0 5 copp 029-0 6 lead 082-0 7 copp 029-0 8 copp 029-0 8 copp 029-0 08-0 08-0 08-0 028-0 028-0 9 copp 029-0 028-0 9 copp 029-0 0 8 copp 0 8 copp 0 8 2 8 copp 0 8 copp 0 8 copp 0 8 copp 0 8 copp 0 8 copp 0 8 copp 0 8 copp 0 8 copp 0 8 copp 0 8 copp 0 8 copp 0 8 copp 0 8 copp 0 8 copp 0 8 copp 0 8 copp 0 8 copp 0 8 copp 0 2 0 8 copp 0 8 2 8 2 8 2 8 2 8 8 2 8 8 8 8 8 8 8 8			1308-38-9									
5 Copp 029-0 6 lead 082-0 7 merc 080-0 8 nicke 028-0 9 seler 028-0 9 ziec		nium(VI) compounds ne exception of bariu cified elsewhere in t	um chromate and		<0.3	mg/kg	2.27	<0.681	mg/kg	<0.0000681 %		<lod< th=""></lod<>
5 1 <th1< th=""> <th1< th=""> <th1< th=""> <th1< th=""></th1<></th1<></th1<></th1<>	017-00-8											
6 4 lead 082-0 7 4 merc 080-0 8 4 nicke 028-0 9 4 seler 028-0 028-0 028-0 028-0 028-0 028-0 028-0 028-0 028-0 028-0 028-0 028-0 028-0 082-1 0 082-1 0 082-1 0 0 0 0 0 0 0 0 0 0 0 0 0		oxide; copper (I) oxid			10	mg/kg	1.126	11.259	mg/kg	0.00113 %		
6 082-0 7 8 8 080-0 9 8 28-0 9 28-0 9 28-0 9 28-0 9 28-0	-002-00-X		1317-39-1						-			
7 * merc 080-0 8 * nicke 028-0 9 * seler 028-0 028-0 028-0	d { lead chroma	,		1	23	mg/kg	1.56	35.876	mg/kg	0.0023 %		
7 080-0 8 nicke 028-0 028-0 9 seler 028-0 028-0 1 100-0 1 100-0 1 100-0 2 100-0	004-00-2	1	7758-97-6									
8 3 nicke 028-0 9 3 seler 028-0 028-0 028-0	rcury { mercury		7487-94-7		0.3	mg/kg	1.353	0.406	mg/kg	0.0000406 %		
8 028-0 9 seler 028-0	el { nickel chro		1401-94-1									
9 seler	035-00-7		14721-18-7	-	18.7	mg/kg	2.976	55.656	mg/kg	0.00557 %		
9 1 028-0	enium { nickel s											
10 at zinc	031-00-5	239-125-2	15060-62-5		2	mg/kg	2.554	5.108	mg/kg	0.000511 %		
	{ zinc chroma	1										
024-0	007-00-3	236-878-9	13530-65-9		36	mg/kg	2.774	99.869	mg/kg	0.00999 %		
11 [•] PH		1		1	7.59			7.59		7.50 ml l		
			PH		7.59	рН		7.59	рН	7.59 pH		
12 naph	hthalene		·		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< th=""></lod<>
601-0	052-00-2	202-049-5	91-20-3		<0.04	iiig/kg		<0.04	mg/kg	<0.000004 /8		
13 acen	naphthylene				<0.03	mg/kg		<0.03	ma/ka	<0.000003 %		<lod< th=""></lod<>
		205-917-1	208-96-8						ing/kg			
14 acen	naphthene				<0.05	mg/kg		<0.05	ma/ka	<0.000005 %		<lod< td=""></lod<>
		201-469-6	83-32-9									
15 fluore	rene	201-695-5	86-73-7		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< th=""></lod<>
16 phen		201-581-5	85-01-8		<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< th=""></lod<>
17 anthi	nanthrene		120-12-7		<0.04	mg/kg		<0.04		<0.000004 %	Γ	<lod< th=""></lod<>

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
18	Θ	fluoranthene	205-912-4	206-44-0		<0.03	mg/kg		<0.03	mg/kg	<0.00003 %		<lod< th=""></lod<>
19	۲	pyrene	204-927-3	129-00-0		<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
20		benzo[a]anthracen 601-033-00-9	e 200-280-6	56-55-3		<0.06	mg/kg		<0.06	mg/kg	<0.000006 %		<lod< td=""></lod<>
21		chrysene 601-048-00-0	205-923-4	218-01-9		<0.02	mg/kg		<0.02	mg/kg	<0.00002 %		<lod< td=""></lod<>
22		benzo[b]fluoranthe 601-034-00-4	ne 205-911-9	205-99-2		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
23		benzo[k]fluoranthei 601-036-00-5	ne 205-916-6	207-08-9		<0.02	mg/kg		<0.02	mg/kg	<0.00002 %		<lod< td=""></lod<>
24		benzo[a]pyrene; be 601-032-00-3	enzo[def]chrysene 200-028-5	50-32-8		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
25	8	indeno[123-cd]pyre		193-39-5		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
26		dibenz[a,h]anthrac		53-70-3		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
27	0	benzo[ghi]perylene		191-24-2	t	<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
		1	1	1						Total:	0.0357 %		1

Key

	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Classification of sample: WS04-17/03/2022-0.80m

Sample details

Sample name: WS04-17/03/2022-0.80m LoW Code: Chapter:

Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites) 17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 0% No Moisture Correction applied (MC)

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	-	arsenic { arsenic tr		, ,		12.6	mg/kg	1.32	16.636	mg/kg	0.00166 %		
		033-003-00-0	1	1327-53-3									
2	4	cadmium {				<0.1	ma/ka	1.142	<0.114	ma/ka	<0.0000114 %		<lod< th=""></lod<>
		048-002-00-0	215-146-2	1306-19-0						5.5			_
3	4	chromium in chrom <mark>oxide (worst case)</mark>			_	107.5	mg/kg	1.462	157.117	mg/kg	0.0157 %		
				1308-38-9	_								
4	4	compounds, with the of compounds spe	nium(VI) compounds he exception of bariu cified elsewhere in t	um chromate and	_	<0.3	mg/kg	2.27	<0.681	mg/kg	<0.0000681 %		<lod< th=""></lod<>
		024-017-00-8											
5	4		oxide; copper (I) oxid		_	10	mg/kg	1.126	11.259	mg/kg	0.00113 %		
		029-002-00-X		1317-39-1									
6	4	lead { lead chroma			1	23	mg/kg	1.56	35.876	mg/kg	0.0023 %		
	-	082-004-00-2		7758-97-6									
7	4	mercury { mercury 080-010-00-X		7487-94-7		<0.1	mg/kg	1.353	<0.135	mg/kg	<0.0000135 %		<lod< td=""></lod<>
		nickel { nickel chro		1401-94-1									
8	44	028-035-00-7		14721-18-7		15.6	mg/kg	2.976	46.43	mg/kg	0.00464 %		
	æ			11121101									
9	•••	028-031-00-5	239-125-2	15060-62-5		2	mg/kg	2.554	5.108	mg/kg	0.000511 %		
	æ	zinc { zinc chromat											
10	~	024-007-00-3	236-878-9	13530-65-9		40	тg/кg	2.774	110.966	mg/kg	0.0111 %		
11		pН	1			6.84			6.84	рН	6 94 54		
''				PH		0.04	рН		0.04	рп	6.84 pH		
12		naphthalene				<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< th=""></lod<>
12		601-052-00-2	202-049-5	91-20-3		<0.04	iiig/kg		<0.04	mg/kg	<0.000004 78		LOD
13	8	acenaphthylene				<0.03	mg/kg		<0.03	ma/ka	<0.000003 %		<lod< th=""></lod<>
			205-917-1	208-96-8						ing/itg			
14	8	acenaphthene				<0.05	ma/ka		<0.05	ma/ka	<0.000005 %		<lod< td=""></lod<>
			201-469-6	83-32-9									
15	8	fluorene	201-695-5	86-73-7		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< th=""></lod<>
16	۵	phenanthrene	201-581-5	85-01-8		<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< th=""></lod<>
17	0	anthracene		120-12-7		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< th=""></lod<>
			204-3/1-1	120-12-7									

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
18	8	fluoranthene	205-912-4	206-44-0		0.04	mg/kg		0.04	mg/kg	0.000004 %		
19		pyrene	204-927-3	129-00-0		<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
20		benzo[a]anthracen 601-033-00-9	e 200-280-6	56-55-3		<0.06	mg/kg		<0.06	mg/kg	<0.000006 %		<lod< td=""></lod<>
21		chrysene 601-048-00-0	205-923-4	218-01-9		0.04	mg/kg		0.04	mg/kg	0.000004 %		
22		benzo[b]fluoranthe 601-034-00-4	ne 205-911-9	205-99-2		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
23		benzo[k]fluoranther 601-036-00-5	ne 205-916-6	207-08-9		<0.02	mg/kg		<0.02	mg/kg	<0.000002 %		<lod< td=""></lod<>
24		benzo[a]pyrene; be 601-032-00-3	enzo[def]chrysene 200-028-5	50-32-8		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
25	8	indeno[123-cd]pyre		193-39-5		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
26		dibenz[a,h]anthrace 601-041-00-2	ene 200-181-8	53-70-3		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
27	8	benzo[ghi]perylene		191-24-2		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
		1	l – – – – – – – – – – – – – – – – – – –	1		I				Total:	0.0372 %		L

Key

	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Classification of sample: WS05-17/03/2022-0.20m

Sample details

Sample name: WS05-17/03/2022-0.20m LoW Code: Chapter:

Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites) 17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 0% No Moisture Correction applied (MC)

2 048-002: 3 chromiu oxide (w 4 chromiu compou of compou of	3-00-0 um { cadmiu 2-00-0 ium in chror (worst case) ium in chror punds, with t pounds spe 7-00-8	215-481-4 im oxide } 215-146-2 nium(III) compounds 215-160-9 nium(VI) compounds the exception of baril scified elsewhere in t	1308-38-9 s { chromium (VI) um chromate and		18.3 <0.1	mg/kg mg/kg	1.32 1.142		mg/kg	0.00242 %		
2 Cadmiur 048-002 048-002 3 chromiu 2 chromiu 3 chromiu 4 chromiu 5 chromiu 6 lead { le 022-002 029-002 6 lead { le 029-002 080-010 8 nickel { le 028-035 028-035 9 seleniur 028-031 028-031 10 zinc { zin 024-007 11 11 PH 12 naphtha 601-052	um { cadmit 2-00-0 ium in chror (worst case) ium in chror punds, with t spounds spe 7-00-8	in oxide } 215-146-2 nium(III) compounds 215-160-9 nium(VI) compounds the exception of baril scified elsewhere in t	1306-19-0 (Chromium(III) 1308-38-9 s (chromium (VI) um chromate and									· ·
2 048-002 3 chromiu oxide (w oride (w) oride (w) o	2-00-0 ium in chror (worst case) ium in chror pounds, with t ipounds spe 7-00-8	215-146-2 nium(III) compounds } 215-160-9 nium(VI) compounds the exception of bari- scified elsewhere in t	 5 { Chromium(III) 1308-38-9 s { chromium (VI) um chromate and	_		mg/kg	1.142	<0.114	ma/ka			<u> </u>
3 chromiu oxide (w oxide (w) oxide (w) oxi	ium in chror (worst case) ium in chror punds, with t ipounds spe 7-00-8	nium(III) compounds } 215-160-9 nium(VI) compounds the exception of bariliscified elsewhere in t	 5 { Chromium(III) 1308-38-9 s { chromium (VI) um chromate and						IIIU/NUI	<0.0000114 %		<lod< th=""></lod<>
3 oxide (w 4 chromiu compou of compou 024-017. 5 coper (029-002) 6 lead { le 082-004. 7 mercury 080-010. 8 nickel { l 028-035. 9 seleniur 024-017. 10 zinc { zi 024-007. 11 PH 12 naphtha 601-052.	(worst case) ium in chror punds, with 1 ipounds spe 7-00-8) } 215-160-9 mium(VI) compounds the exception of bari crified elsewhere in t	1308-38-9 s { chromium (VI) um chromate and	_				-	5.5			
4 compound of compound of compound of compound for the point of compound of compound for the point of compou	punds, with t pounds spe 7-00-8	nium(VI) compounds the exception of bari ecified elsewhere in t	s { chromium (VI) um chromate and		52.5	mg/kg	1.462	76.732	mg/kg	0.00767 %		
4 compound of compound of compound of compound for the point of compound of compound for the point of compou	punds, with t pounds spe 7-00-8	the exception of barine cified elsewhere in t	um chromate and									
5 Copper (029-002) 6 lead { le 082-004 7 mercury 080-010 8 nickel { 028-035 9 seleniur 028-031 10 zinc { zi 024-007 11 PH 12 naphtha 601-052					<0.3	mg/kg	2.27	<0.681	mg/kg	<0.0000681 %		<lod< th=""></lod<>
S Image: Constraint of the second secon											-	
6 Iead { Iea Ie		oxide; copper (I) oxi			18	mg/kg	1.126	20.266	mg/kg	0.00203 %		
6 082-004 7 8 mercury 080-010 8 nickel { 028-035 9 seleniur 028-031 028-031 10 zinc { zin (zin (zin (215-270-7	1317-39-1									
7 Image: mercury 080-010 8 nickel { 1 028-035 9 seleniur 028-031 10 zinc { zi 028-031 10 zinc { zi 028-031 10 nickel { zi 028-031 10 nickel { zi 028-031 10 nickel { zi 028-031 10 zinc { zi 028-031 10 nickel { zi 028-031 10 zinc { zi 028-031 10 zinc { zi 028-031 11 pH 12 naphtha 601-0522 accordinal	lead chroma			1	19	mg/kg	1.56	29.636	mg/kg	0.0019 %		
7 080-010 8 nickel { 028-035 9 seleniur 028-031 10 zinc { zin 024-007 11 pH 12 naphtha 601-052		231-846-0	7758-97-6									
8 inickel { 028-035 9 seleniur 028-031 10 seleniur 024-007 11 PH 12 naphtha 601-052		/ dichloride } 231-299-8	7487-94-7		0.1	mg/kg	1.353	0.135	mg/kg	0.0000135 %		
8 028-035 9 seleniur 028-031 028-031 10 zinc { zin 024-007 11 PH 12 naphtha 601-052			1401-94-1	-								
9 < seleniur 028-031 028-031 10 zinc { zin 024-007 11 ● PH 12 naphtha 601-052	•	238-766-5	14721-18-7		18.2	mg/kg	2.976	54.168	mg/kg	0.00542 %		
9 028-031- 10 210 024-007- 11 PH 12 naphtha 601-052- 028-031- 024-007- 024	um { nickel s											
10 024-007 11 PH 12 naphtha 601-052	•	239-125-2	15060-62-5		2	mg/kg	2.554	5.108	mg/kg	0.000511 %		
10 024-007 11 PH 12 naphtha 601-052	zinc chroma	ite }	1			0	0 774			0.0101.0/		
11 naphtha 12 naphtha 601-052	7-00-3	236-878-9	13530-65-9		69	mg/кg	2.774	191.416	mg/kg	0.0191 %		
12 naphtha 601-052					5.89	pН		5.89	pН	5.89 pH		
12 601-052			PH		5.69	рп		5.69	рп	5.69 pm		
601-052	nalene				<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< th=""></lod<>
13 acenapt	2-00-2	202-049-5	91-20-3		<0.04	ing/kg		<0.04	iiig/itg			
	phthylene				<0.03	mg/kg		<0.03	ma/ka	<0.000003 %		<lod< th=""></lod<>
		205-917-1	208-96-8	1								
14 acenapt					<0.05	ma/ka		<0.05	mg/ka	<0.000005 %		<lod< td=""></lod<>
	phthene	201-469-6	83-32-9						5. 5			
15 fluorene		bo4 co5 5	86-73-7		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< th=""></lod<>
16 phenant		201-695-5	85-01-8		<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< th=""></lod<>
17 anthrace	ne	201-595-5			<0.04	mg/kg		<0.04		<0.000004 %		<lod< th=""></lod<>

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
18	0	fluoranthene	205-912-4	206-44-0		<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< th=""></lod<>
19	۲	pyrene	204-927-3	129-00-0		<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
20		benzo[a]anthracen 601-033-00-9	e 200-280-6	56-55-3		<0.06	mg/kg		<0.06	mg/kg	<0.000006 %		<lod< td=""></lod<>
21		chrysene 601-048-00-0	205-923-4	218-01-9		<0.02	mg/kg		<0.02	mg/kg	<0.000002 %		<lod< td=""></lod<>
22		benzo[b]fluoranthe 601-034-00-4	ne 205-911-9	205-99-2		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
23		benzo[k]fluoranthei 601-036-00-5	ne 205-916-6	207-08-9		<0.02	mg/kg		<0.02	mg/kg	<0.000002 %		<lod< td=""></lod<>
24		benzo[a]pyrene; be 601-032-00-3	enzo[def]chrysene 200-028-5	50-32-8		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
25	0	indeno[123-cd]pyre		193-39-5		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
26		dibenz[a,h]anthrac		53-70-3		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
27	8	benzo[ghi]perylene		191-24-2		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
	!	203-005-0 191-24-2								Total:	0.0392 %	Г	1

Key

	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Classification of sample: WS06-17/03/2022-0.60m

Sample details

Sample name: WS06-17/03/2022-0.60m LoW Code: Chapter:

Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites) 17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 0% No Moisture Correction applied (MC)

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	4	arsenic { arsenic tr 033-003-00-0	<mark>ioxide</mark>	1327-53-3		35.3	mg/kg	1.32	46.607	mg/kg	0.00466 %		
2	4	cadmium { cadmiu 048-002-00-0		1306-19-0		<0.1	mg/kg	1.142	<0.114	mg/kg	<0.0000114 %		<lod< td=""></lod<>
3	4	chromium in chrom <mark>oxide (worst case)</mark>	nium(III) compounds			77.3	mg/kg	1.462	112.978	mg/kg	0.0113 %		
4	4	compounds, with the	hium(VI) compounds he exception of barin cified elsewhere in t	s { chromium (VI) um chromate and		<0.3	mg/kg	2.27	<0.681	mg/kg	<0.0000681 %		<lod< td=""></lod<>
5	~		oxide; copper (I) oxio 215-270-7	d <mark>e</mark> } 1317-39-1	-	18	mg/kg	1.126	20.266	mg/kg	0.00203 %	t	
6	~	lead { <mark>lead chroma</mark> 082-004-00-2		7758-97-6	1	21	mg/kg	1.56	32.756	mg/kg	0.0021 %		
7	4	mercury { mercury 080-010-00-X		7487-94-7		<0.1	mg/kg	1.353	<0.135	mg/kg	<0.0000135 %	ſ	<lod< td=""></lod<>
8	~			14721-18-7		24.1	mg/kg	2.976	71.728	mg/kg	0.00717 %		
9	4	selenium { nickel s 028-031-00-5		15060-62-5		2	mg/kg	2.554	5.108	mg/kg	0.000511 %		
10	4	zinc { zinc chromat 024-007-00-3	t <mark>e</mark> } 236-878-9	13530-65-9		52	mg/kg	2.774	144.256	mg/kg	0.0144 %		
11	۲	TPH (C6 to C40) p	etroleum group	ТРН		<38	mg/kg		<38	mg/kg	<0.0038 %		<lod< td=""></lod<>
12		tert-butyl methyl et 2-methoxy-2-methy 603-181-00-X	, ,	1634-04-4		<0.002	mg/kg		<0.002	mg/kg	<0.000002 %		<lod< td=""></lod<>
13		benzene 601-020-00-8	200-753-7	71-43-2		<0.003	mg/kg		<0.003	mg/kg	<0.000003 %		<lod< td=""></lod<>
14		toluene 601-021-00-3	203-625-9	108-88-3		<0.003	mg/kg		<0.003	mg/kg	<0.000003 %		<lod< td=""></lod<>
15		ethylbenzene 601-023-00-4	202-849-4	100-41-4		<0.003	mg/kg		<0.003	mg/kg	<0.000003 %		<lod< td=""></lod<>
16		xylene 601-022-00-9	202-422-2 [1] 203-396-5 [2]	95-47-6 [1] 106-42-3 [2]		<0.013	mg/kg		<0.013	mg/kg	<0.0000013 %		<lod< td=""></lod<>

#			Determinand		CLP Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
		EU CLP index number	EC Number	CAS Number	CLP			1 actor			value	MC	Useu
			203-576-3 [3] 215-535-7 [4]	108-38-3 [3] 1330-20-7 [4]									
17		pН	~		Τ	6.93	pН		6.93	pН	6.93 pH		
				PH		0.33			0.35	pri	0.95 pm		
18		naphthalene				<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
		601-052-00-2	202-049-5	91-20-3									
19	8	acenaphthylene	205-917-1	208-96-8		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
20	8	acenaphthene	201-469-6	83-32-9		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
21		fluorene				<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
22	8	phenanthrene	201-695-5	86-73-7		<0.01	mg/kg		<0.01	ma/ka	<0.000001 %		<lod< td=""></lod<>
			201-581-5	85-01-8									
23	Θ	anthracene	204-371-1	120-12-7		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
24	9	fluoranthene			Τ	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
-	-	pyrene	205-912-4	206-44-0	-							-	
25			204-927-3	129-00-0		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
26		benzo[a]anthracen 601-033-00-9	e 200-280-6	56-55-3		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
27		chrysene 601-048-00-0	205-923-4	218-01-9		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
		benzo[b]fluoranthe			1								
28		601-034-00-4	205-911-9	205-99-2		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
29		benzo[k]fluoranthe 601-036-00-5	205-916-6	207-08-9		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
30		benzo[a]pyrene; be	1			<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
31	8	indeno[123-cd]pyre	ene	50-32-8		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
			205-893-2	193-39-5									
32		dibenz[a,h]anthrac 601-041-00-2	ene 200-181-8	53-70-3		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
		benzo[ghi]perylene		p3-70-3	-							-	
33	۲	benzolginjpervien	205-883-8	191-24-2	_	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
34		phenol				<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
		604-001-00-2	203-632-7	108-95-2	_							-	
35	Θ	1,1-dichloroethane	203-458-1,	tnane (combined)		<0.007	mg/kg		<0.007	mg/kg	<0.000007 %		<lod< td=""></lod<>
		tetrachloroethylene	200-863-5 e		+	0.000			0.000		.0.0000000.00	-	
36		602-028-00-4	204-825-9	127-18-4	1	<0.003	mg/kg		<0.003	mg/kg	<0.000003 %		<lod< td=""></lod<>
37		carbon tetrachloric		ane		<0.004	mg/kg		<0.004	mg/kg	<0.0000004 %		<lod< td=""></lod<>
<u> </u>		602-008-00-5	200-262-8	56-23-5	+								
38		trichloroethylene; t		Fo o (o		<0.003	mg/kg		<0.003	mg/kg	<0.000003 %		<lod< td=""></lod<>
20		602-027-00-9 vinyl chloride; chlo	201-167-4 roethylene	79-01-6	+	-0.000			.0.000				-1.02
39		602-023-00-7	200-831-0	75-01-4		<0.002	mg/kg		<0.002	mg/kg	<0.000002 %		<lod< td=""></lod<>
40		hexachlorobenzen 602-065-00-6	e 204-273-9	118-74-1		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
41	8	dichlorodifluorome	thane			<0.002	mg/kg		<0.002	mg/kg	<0.0000002 %		<lod< td=""></lod<>
\vdash		chloromethane; m	200-893-9 ethyl chloride	75-71-8	+							-	
42		602-001-00-7	200-817-4	74-87-3		<0.003	mg/kg		<0.003	mg/kg	<0.000003 %		<lod< td=""></lod<>
43		bromomethane; m 602-002-00-2	ethylbromide 200-813-2	74-83-9		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
44		chloroethane				<0.002	mg/kg		<0.002	mg/kg	<0.000002 %		<lod< td=""></lod<>
	I	602-009-00-0	200-830-5	75-00-3									

#			Determinand		CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
		EU CLP index number	EC Number	CAS Number	CLP		1 actor		value	MC /	Useu
45	8	trichlorofluorometh	ane 200-892-3	75-69-4		<0.002 mg/kg		<0.002 mg/kg	<0.000002 %		<lod< td=""></lod<>
40			e; vinylidene chlorid			0.000 #		0.000 (H	
46				75-35-4		<0.006 mg/kg		<0.006 mg/kg	<0.0000006 %		<lod< td=""></lod<>
47		dichloromethane; n	nethylene chloride			<0.007 mg/kg		<0.007 mg/kg	<0.000007 %		<lod< td=""></lod<>
47		602-004-00-3	200-838-9	75-09-2		<0.007 mg/kg		<0.007 mg/kg	<0.0000007 %		<lod< td=""></lod<>
48	8	2,2-dichloropropan	e 209-832-0	594-20-7		<0.004 mg/kg		<0.004 mg/kg	<0.0000004 %		<lod< td=""></lod<>
49		bromochlorometha		001201	1	-0.002 malka		-0.002 ma/ka	.0.0000002.0/	F	<lod< td=""></lod<>
49			200-826-3	74-97-5		<0.003 mg/kg		<0.003 mg/kg	<0.000003 %		<lod< td=""></lod<>
50		chloroform; trichlor	omethane			<0.003 mg/kg		<0.003 mg/kg	<0.000003 %		<lod< td=""></lod<>
		602-006-00-4	200-663-8	67-66-3		<0.000 mg/ng					.205
51		1,1,1-trichloroethar	ne; methyl chlorofori	m		<0.003 mg/kg		<0.003 mg/kg	<0.000003 %		<lod< td=""></lod<>
		602-013-00-2	200-756-3	71-55-6							_
52		1,1-dichloropropen				<0.003 mg/kg		<0.003 mg/kg	<0.000003 %		<lod< td=""></lod<>
				563-58-6							
53			e; propylene dichlor			<0.006 mg/kg		<0.006 mg/kg	<0.0000006 %		<lod< td=""></lod<>
			201-152-2	78-87-5							
54		dibromomethane				<0.003 mg/kg		<0.003 mg/kg	<0.000003 %		<lod< td=""></lod<>
			200-824-2	74-95-3							
55	۲	bromodichlorometh		75-27-4		<0.003 mg/kg		<0.003 mg/kg	<0.000003 %		<lod< td=""></lod<>
			e; [1] (Z)-1,3-dichlor		-						
56				542-75-6 [1]		<0.004 mg/kg		<0.004 mg/kg	<0.0000004 %		<lod< td=""></lod<>
			208-826-5 [1] 233-195-8 [2]	10061-01-5 [2]		letter inging		101001	1010000001.70		
		trans-1,3-dichlorop				0.000 //		0.000 //			1.05
57		•	431-460-4	10061-02-6	-	<0.003 mg/kg		<0.003 mg/kg	<0.000003 %		<lod< td=""></lod<>
		1,1,2-trichloroethar				0.000 #		0.000 "			1.05
58			201-166-9	79-00-5		<0.003 mg/kg		<0.003 mg/kg	<0.000003 %		<lod< td=""></lod<>
59		1,3-dichloropropan	e			.0.002 mallia		.0.002 malka	.0.000002.0/		<lod< td=""></lod<>
59			205-531-3	142-28-9		<0.003 mg/kg		<0.003 mg/kg	<0.000003 %		<lod< td=""></lod<>
60		dibromochlorometh	hane			<0.003 mg/kg		<0.003 mg/kg	<0.000003 %		<lod< td=""></lod<>
00			204-704-0	124-48-1		<0.000 mg/kg		<0.000 mg/kg	<0.0000003 /8		LOD
61		1,2-dibromoethane				<0.003 mg/kg		<0.003 mg/kg	<0.000003 %		<lod< td=""></lod<>
<u> </u>		602-010-00-6	203-444-5	106-93-4							
62		chlorobenzene				<0.003 mg/kg		<0.003 mg/kg	<0.000003 %		<lod< td=""></lod<>
		602-033-00-1	203-628-5	108-90-7							
63	Θ	1,1,1,2-tetrachloroe				<0.003 mg/kg		<0.003 mg/kg	<0.000003 %		<lod< td=""></lod<>
L			211-135-1	630-20-6	_	3 3					
64		bromoform; tribrom				<0.003 mg/kg		<0.003 mg/kg	<0.000003 %		<lod< td=""></lod<>
<u> </u>			200-854-6	75-25-2	-					H	
65		1,1,2,2-tetrachloroe 602-015-00-3	201-197-8	79-34-5		<0.003 mg/kg		<0.003 mg/kg	<0.000003 %		<lod< td=""></lod<>
66		bromobenzene				.0.000 mallia		.0.000 mallia	.0.000002.0/		
66		602-060-00-9	203-623-8	108-86-1	1	<0.002 mg/kg		<0.002 mg/kg	<0.000002 %		<lod< td=""></lod<>
67		1,2,3-trichloropropa	ane			<0.004 mg/kg		<0.004 mg/kg	<0.0000004 %		<lod< td=""></lod<>
		602-062-00-X	202-486-1	96-18-4		<0.004 mg/kg		<0.004 mg/kg	<0.000004 /8		
68		mesitylene; 1,3,5-tr	imethylbenzene			<0.003 mg/kg		<0.003 mg/kg	<0.000003 %		<lod< td=""></lod<>
		601-025-00-5	203-604-4	108-67-8	1						
69	۲	tert-butylbenzene				<0.005 mg/kg		<0.005 mg/kg	<0.0000005 %		<lod< td=""></lod<>
Ĺ			202-632-4	98-06-6							
70		1,2,4-trimethylbenz				<0.006 mg/kg		<0.006 mg/kg	<0.0000006 %		<lod< td=""></lod<>
			202-436-9	95-63-6		5.15		3.49		\square	
71		sec-butylbenzene				<0.004 mg/kg		<0.004 mg/kg	<0.0000004 %		<lod< td=""></lod<>
			205-227-0	135-98-8	-					\vdash	
72	•	4-isopropyltoluene	202-796-7	99-87-6	-	<0.004 mg/kg		<0.004 mg/kg	<0.0000004 %		<lod< td=""></lod<>
70		1,3-dichlorbenzene		*	1	.0.004 "		.0.004	.0.0000001.0/		1.02
73			208-792-1	541-73-1	1	<0.004 mg/kg		<0.004 mg/kg	<0.0000004 %		<lod< td=""></lod<>
				۸	-						

#			Determinand		Note	User entered	d data	Conv.	Compound	conc.	Classification	Applied	Conc. Not
		EU CLP index number	EC Number	CAS Number	CLP			Factor			value	MC A	Used
74		1,4-dichlorobenzen 602-035-00-2	e; p-dichlorobenze 203-400-5	ne 106-46-7		<0.004	mg/kg		<0.004	mg/kg	<0.0000004 %		<lod< td=""></lod<>
75	0	n-butylbenzene	203-209-7	104-51-8		<0.004	mg/kg		<0.004	mg/kg	<0.0000004 %		<lod< td=""></lod<>
76		1,2-dichlorobenzen 602-034-00-7	e; o-dichlorobenze 202-425-9	ne 95-50-1		<0.004	mg/kg		<0.004	mg/kg	<0.000004 %		<lod< td=""></lod<>
77		1,2-dibromo-3-chlo 602-021-00-6	ropropane 202-479-3	96-12-8		<0.004	mg/kg		<0.004	mg/kg	<0.000004 %		<lod< td=""></lod<>
78		1,2,4-trichlorobenz 602-087-00-6	ene 204-428-0	120-82-1		<0.007	mg/kg		<0.007	mg/kg	<0.000007 %		<lod< td=""></lod<>
79	۲	hexachlorobutadier	ne 201-765-5	87-68-3		<0.004	mg/kg		<0.004	mg/kg	<0.000004 %		<lod< td=""></lod<>
80		1,2,3-trichlorobenz		87-61-6		<0.007	mg/kg		<0.007	mg/kg	<0.000007 %		<lod< td=""></lod<>
81		styrene 601-026-00-0	202-851-5	100-42-5		<0.003	mg/kg		<0.003	mg/kg	<0.000003 %		<lod< td=""></lod<>
		2-chlorophenol; [1] chlorophenol [4] 604-008-00-0	4-chlorophenol; [2] 202-433-2 [1]	95-57-8 [1]		0.01			0.04		0.000004.0/		1.05
82			203-402-6 [2] 203-582-6 [3] 246-691-4 [4]	106-48-9 [2] 108-43-0 [3] 25167-80-0 [4]		<0.01	mg/kg		<0.01	тід/кд	<0.000001 %		<lod< td=""></lod<>
83	8	2-nitrophenol	201-857-5	88-75-5		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
84		2,4-dichlorophenol 604-011-00-7	204-429-6	120-83-2		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
85		[4] 2,6-xylenol; [5] x		enol; [3] 2,3-xylenol; ,5)-xylenol [7] 95-65-8 [1] 95-87-4 [2] 105-67-9 [3] 526-75-0 [4] 576-26-1 [5] 1300-71-6 [6] 71975-58-1 [7]	-	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
86		2,4,5-trichlorophen 604-017-00-X	ol 202-467-8	95-95-4		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
87		2,4,6-trichlorophen 604-018-00-5	ol 201-795-9	88-06-2		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
88		chlorocresol; 4-chlo 604-014-00-3	oro-m-cresol; 4-chlo 200-431-6	59-50-7		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
89		4-nitrophenol; p-nit 609-015-00-2	rophenol 202-811-7	100-02-7		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
90		pentachlorophenol 604-002-00-8	201-778-6	87-86-5		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
91	Θ	2-chloronaphthaler	ne 202-079-9	91-58-7		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
92	8	2-methyl naphthale	ne 202-078-3	91-57-6		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
93		bis(2-ethylhexyl) pł DEHP 607-317-00-9	nthalate; di-(2-ethyll	hexyl) phthalate;		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
94		BBP; benzyl butyl p 607-430-00-3	ohthalate 201-622-7	85-68-7		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
95		dibutyl phthalate; D 607-318-00-4	BP 201-557-4	84-74-2		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
96	0	di-n-octyl phthalate	204-214-7	117-84-0		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
97	Θ	diethyl phthalate	201-550-6	84-66-2		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
98	8	dimethyl phthalate	205-011-6	131-11-3		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>

Page 20 of 71

#			Determinand		CLP Note	User entered	data	Conv. Factor	Compound co	onc.	Classification value	MC Applied	Conc. Not Used
		EU CLP index number	EC Number	CAS Number	CLP			Factor			value	MC /	Useu
		2,4-dinitrotoluene;	[1] dinitrotoluene [2]]									
99			204-450-0 [1] 246-836-1 [2]	121-14-2 [1] 25321-14-6 [2]		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
100		2,6-dinitrotoluene	210-106-0	606-20-2		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
101	8	4-bromophenylphe	nylether			<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
			202-952-4	101-55-3								_	
102		4-chloroaniline			_	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
			203-401-0	106-47-8	-							-	
103	8	4-chlorophenylphe		7005 70 0	_	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
	_	azobenzene	230-281-7	7005-72-3									
104			203-102-5	103-33-3	-	<0.01	mg/kg		<0.01 1	mg/kg	<0.000001 %		<lod< td=""></lod<>
		bis(2-chloroethoxy)		105-55-5	+								
105	۲		203-920-2	111-91-1		<0.01	mg/kg		<0.01 I	mg/kg	<0.000001 %		<lod< td=""></lod<>
		bis(2-chloroethyl) e											
106			203-870-1	111-44-4		<0.01	mg/kg		<0.01 1	mg/kg	<0.000001 %		<lod< td=""></lod<>
407	0	carbazole	1			0.01			0.01		0.000004.0/		1.00
107			201-696-0	86-74-8		<0.01	mg/kg		<0.01 I	mg/кg	<0.000001 %		<lod< td=""></lod<>
108		dibenzofuran				<0.01	ma/ka		<0.01	ma/ka	<0.000001 %		<lod< td=""></lod<>
100			205-071-3	132-64-9		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
109		hexachlorocyclope	ntadiene			<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
103		602-078-00-7	201-029-3	77-47-4		<0.01	iiig/kg		<0.01	шу/ку	<0.000001 /8		
110	0	hexachloroethane				<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
			200-666-4	67-72-1									
111		3,5,5-trimethylcyclo	ohex-2-enone; isopł	norone		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
		606-012-00-8	201-126-0	78-59-1									
112		nitrosodipropylamir	ne			<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
			210-698-0	621-64-7								_	
113		nitrobenzene				<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
			202-716-0	98-95-3								-	
		trans-dichloroethyle				0.000			0.000		0.0000000.0/		1.05
114			208-750-2 [1] 205-859-7 [2] 205-860-2 [3]	540-59-0 [1] 156-59-2 [2] 156-60-5 [3]		<0.006	mg/kg		<0.006	тід/кд	<0.0000006 %		<lod< td=""></lod<>
		cumene; [1] propyll	benzene [2]										
115			202-704-5 [1] 203-132-9 [2]	98-82-8 [1] 103-65-1 [2]		<0.007	mg/kg		<0.007	mg/kg	<0.000007 %		<lod< td=""></lod<>
] 3-chlorotoluene; [2		T								
116			202-424-3 [1] 203-580-5 [2] 203-397-0 [3] 246-698-2 [4]	95-49-8 [1] 108-41-8 [2] 106-43-4 [3] 25168-05-2 [4]		<0.006	mg/kg		<0.006	mg/kg	<0.0000006 %		<lod< td=""></lod<>
		m-cresol; [1] o-cres	sol; [2] p-cresol; [3]										
117			203-577-9 [1] 202-423-8 [2] 203-398-6 [3] 215-293-2 [4]	108-39-4 [1] 95-48-7 [2] 106-44-5 [3] 1319-77-3 [4]	_	<0.02	mg/kg		<0.02	mg/kg	<0.000002 %		<lod< td=""></lod<>
			n-nitroaniline; [2] p-r		-								
118		612-012-00-9	201-855-4 [1] 202-729-1 [2] 202-810-1 [3]	88-74-4 [1] 99-09-2 [2] 100-01-6 [3]	2	<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
	_			l				l		Total:	0.0462 %		

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
٠	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
ND	Not detected
CLP: Note 1	Only the metal concentration has been used for classification

Classification of sample: WS07-17/03/2022-0.20m

Sample details

Sample name: WS07-17/03/2022-0.20m LoW Code: Chapter:

Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites) 17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 0% No Moisture Correction applied (MC)

1 033-0 2 Cadm 048-0 3 chron oxide 4 chron oxide 5 chron comp of con 024-0 5 coppe 029-0 6 lead 4 082-0 7 merc 080-0 8 nicke 028-0 9 selen 028-0 10 zinc {	le (worst case) pmium in chror ppounds, with t ompounds spe 017-00-8	215-481-4 im oxide } 215-146-2 nium(III) compounds } 215-160-9 nium(VI) compounds he exception of bari scified elsewhere in t oxide; copper (I) oxi 215-270-7	1308-38-9 s { chromium (VI) um chromate and this Annex }	-	16.2 <0.1 38.9		1.32 1.142 1.462	21.389 <0.114 56.855	mg/kg mg/kg mg/kg	0.00214 % <0.0000114 %		<lod< th=""></lod<>
2 3 cadm 048-0 3 chron oxide 024-0 5 copp 024-0 5 copp 029-0 6 lead 082-0 7 second 080-0 8 nicke 028-0 9 selen 028-0 9 selen 028-0 10 cad 028-0 10 cad 028-0 028-0 10 cad 028-0 028-0 10 cad 028-0 008-0 0 0 0 0 0 0 0 0 0 0 0 0 0	mium { cadmiu 002-00-0 omium in chror le (worst case) omium in chror opounds, with t ompounds spe 017-00-8 per { dicopper 002-00-X	im oxide } [215-146-2 nium(III) compounds] [215-160-9 nium(VI) compounds he exception of bari cified elsewhere in t oxide; copper (I) oxi [215-270-7	1306-19-0 s { chromium(III) 1308-38-9 s { chromium (VI) um chromate and this Annex } de }		38.9							<lod< th=""></lod<>
2 4 048-0 3 chron 3 chron 6 chron 024-0 5 coppe 029-0 6 lead 6 082-0 7 cmc 029-0 6 lead 9 082-0 7 selen 028-0 9 selen 028-0 9 selen 028-0 10 cmc 024-0 029-0 10 cmc 029-0 10 cmc 029-0 029-0 10 cmc 029-0 10 cmc 10 cm	002-00-0 pmium in chror le (worst case) pmium in chror ppounds, with t ompounds spe 017-00-8 per { dicopper 002-00-X	215-146-2 nium(III) compounds 215-160-9 nium(VI) compounds he exception of bari cified elsewhere in t oxide; copper (I) oxi 215-270-7	s { Chromium(III) 1308-38-9 s { chromium (VI) um chromate and this Annex } de }	-	38.9							<lod< th=""></lod<>
3 chror oxide 4 chror comport comport of control of control of control oce- 5 copper of control operation 6 lead for operation 7 lead for operation 8 nicke operation 9 selen operation 028-0 0	omium in chror le (worst case) omium in chror apounds, with t ompounds spe 017-00-8 per { dicopper 002-00-X	nium(III) compounds 215-160-9 nium(VI) compounds he exception of bari cified elsewhere in t oxide; copper (I) oxi 215-270-7	s { Chromium(III) 1308-38-9 s { chromium (VI) um chromate and this Annex } de }		38.9			56.855			H	
3 oxide 4 chron comp of con 024-0 5 copped 029-0 6 lead 082-0 7 merce 080-0 8 nicke 028-0 9 selen 028-0 10 zinc { 024-0	e (worst case) omium in chror opounds, with t ompounds spe 017-00-8 per { dicopper 002-00-X	} 215-160-9 nium(VI) compounds he exception of bari cified elsewhere in t oxide; copper (I) oxi 215-270-7	1308-38-9 s { chromium (VI) um chromate and this Annex } de }	_		mg/kg	1.462	56.855	mg/kg	0.00569 %		
4 comp of con 024-0 5 coppu 029-0 6 lead 4 082-0 7 comp 029-0 8 lead 4 082-0 080-0 8 con 028-0 028-0 9 con 028-0 028-0 028-0 028-0 028-0 028-0 028-0 028-0 028-0 028-0 009000000000000000000000000000000000	npounds, with t ompounds spe 017-00-8 per { <mark>dicopper</mark> 002-00-X	nium(VI) compounds he exception of bari ccified elsewhere in t oxide; copper (I) oxi 215-270-7	s { chromium (VI) um chromate and this Annex } de }									
4 comp of con 024-0 5 coppu 029-0 6 lead 4 082-0 7 comp 029-0 8 lead 4 082-0 080-0 8 con 028-0 028-0 9 con 028-0 028-0 028-0 028-0 028-0 028-0 028-0 028-0 028-0 028-0 009000000000000000000000000000000000	npounds, with t ompounds spe 017-00-8 per { <mark>dicopper</mark> 002-00-X	he exception of bari cified elsewhere in t oxide; copper (I) oxi 215-270-7	um chromate and this Annex } de }	_					-			
5 Copper 029-0 029-0 6 lead 7 merc: 080-0 08 8 nicke 028-0 0 9 selen 028-0 0 10 zinc { 024-0 0	per { <mark>dicopper</mark> 002-00-X	215-270-7			<0.3	mg/kg	2.27	<0.681	mg/kg	<0.0000681 %		<lod< th=""></lod<>
5 029-0 6 lead + 082-0 082-0 7 merc: 080-0 8 9 selen 028-0 028-0 9 selen 028-0 028-0 10 zinc { 024-0 024-0	002-00-X	215-270-7		-								
6 ≪ lead + 082-0 7 ≪ mercc 080-0 8 ≪ nicke 028-0 9 ≪ selen 028-0 10 ≪ zinc { 024-0 024-0			1317-39-1	_	16	mg/kg	1.126	18.014	mg/kg	0.0018 %		
6 082-0 7 8 merc: 080-0 8 10 nicke 9 10 10 10 10 10 10 10	{ lead chroma	ate }		-								
7 3 merci 080-0 8 3 nicke 028-0 9 3 selen 028-0 10 3 cm { 024-0 024-0		,	7750.07.0	1	25	mg/kg	1.56	38.995	mg/kg	0.0025 %		
7 080-0 8 nicke 028-0 9 9 selen 028-0 10 10 zinc { 024-0 0		231-846-0	7758-97-6	-								
8 4 nicke 028-0 9 8 selen 028-0 10 28-0 10 28-0 028-0 024-0 024-0	cury { mercury 010-00-X	231-299-8	7487-94-7	_	0.2	mg/kg	1.353	0.271	mg/kg	0.0000271 %		
8 028-0 9 selen 028-0 028-0 028-0 028-0 024-0	el { nickel chro		1401-34-1									
9 3 selen 028-0 10 22-0 024-0	035-00-7	238-766-5	14721-18-7	-	13.8	mg/kg	2.976	41.072	mg/kg	0.00411 %		
9 028-0 10 228-0 024-0	nium { nickel s		1					= 100				
10 024-0	031-00-5	239-125-2	15060-62-5		2	mg/ĸg	2.554	5.108	mg/kg	0.000511 %		
024-0	; { <mark>zinc chroma</mark>	te }			04		0 774	004 700		0.0005.0/		
11 [•] pH	007-00-3	236-878-9	13530-65-9		81	mg/kg	2.//4	224.706	mg/kg	0.0225 %		
					6.53	pН		6.53	pН	6.53 pH		
			PH		0.00	pri		0.00	рп	0.00 pm		
12 naph	hthalene				<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< th=""></lod<>
601-0	052-00-2	202-049-5	91-20-3									
13 acena	naphthylene				<0.03	mg/kg		<0.03	mg/ka	<0.000003 %		<lod< th=""></lod<>
		205-917-1	208-96-8									
14 acena	naphthene				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		201-469-6	83-32-9									
15 fluore		201-695-5	86-73-7		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< th=""></lod<>
16 phen	rene	004 504 5	85-01-8		<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< th=""></lod<>
17 anthr	nanthrene	201-581-5			<0.04	mg/kg		<0.04	malka	<0.000004 %		<lod< th=""></lod<>

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
18	Θ	fluoranthene	205-912-4	206-44-0		<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< th=""></lod<>
19	۲	pyrene	204-927-3	129-00-0		<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
20		benzo[a]anthracen 601-033-00-9	e 200-280-6	56-55-3		<0.06	mg/kg		<0.06	mg/kg	<0.000006 %		<lod< td=""></lod<>
21		chrysene 601-048-00-0	205-923-4	218-01-9		<0.02	mg/kg		<0.02	mg/kg	<0.000002 %		<lod< td=""></lod<>
22		benzo[b]fluoranthe 601-034-00-4	ne 205-911-9	205-99-2		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
23		benzo[k]fluoranther 601-036-00-5	ne 205-916-6	207-08-9		<0.02	mg/kg		<0.02	mg/kg	<0.000002 %		<lod< td=""></lod<>
24		benzo[a]pyrene; be 601-032-00-3	enzo[def]chrysene 200-028-5	50-32-8		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
25	8	indeno[123-cd]pyre		193-39-5		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
26		dibenz[a,h]anthrac		53-70-3		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
27		benzo[ghi]perylene		191-24-2		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
		203-003-0 191-24-2								Total:	0.0394 %	Г	1

Key

	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Classification of sample: WS08-15/03/2022-0.20m

Sample details

Sample name: WS08-15/03/2022-0.20m LoW Code: Chapter:

Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites) 17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 0% No Moisture Correction applied (MC)

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered	d data	Conv. Factor	Compound c	onc.	Classification value	MC Applied	Conc. Not Used
1		arsenic { arsenic tr				21.3	mg/kg	1.32	28.123	mg/kg	0.00281 %		
		033-003-00-0	215-481-4	1327-53-3									
2	4	cadmium {	,			<0.1	mg/kg	1.142	<0.114	mg/kg	<0.0000114 %		<lod< td=""></lod<>
		048-002-00-0	215-146-2	1306-19-0								-	
3	4	chromium in chron <mark>oxide (worst case)</mark>	,		_	44.6	mg/kg	1.462	65.185	mg/kg	0.00652 %		
	-		215-160-9	1308-38-9	-								
4	4	compounds, with the of compounds spe	nium(VI) compounds ne exception of barin cified elsewhere in t	um chromate and	_	<0.3	mg/kg	2.27	<0.681	mg/kg	<0.0000681 %		<lod< th=""></lod<>
		024-017-00-8			-							-	
5	4		oxide; copper (I) oxid		-	25	mg/kg	1.126	28.147	mg/kg	0.00281 %		
		029-002-00-X lead { lead chroma	215-270-7	1317-39-1	-							-	
6	4	082-004-00-2	231-846-0	7758-97-6	1	20	mg/kg	1.56	31.196	mg/kg	0.002 %		
7	æ	mercury { mercury				<0.1	ma/ka	1.353	<0.135	mg/kg	<0.0000135 %		<lod< td=""></lod<>
<i>'</i>		080-010-00-X	231-299-8	7487-94-7		<0.1	шу/ку	1.555	<0.135	шу/ку	<0.0000133 /8		LOD
8	4	nickel { <mark>nickel chro</mark>	mate }			26.5	ma/ka	2.976	78.871	mg/kg	0.00789 %		
		028-035-00-7	238-766-5	14721-18-7									
9		selenium {				2	mg/kg	2.554	5.108	mg/kg	0.000511 %		
		028-031-00-5	239-125-2	15060-62-5	-								
10	4		-	40500 05 0		71	mg/kg	2.774	196.964	mg/kg	0.0197 %		
		024-007-00-3	236-878-9	13530-65-9								_	
11	Θ	рН	1	PH		6.2	pН		6.2	pН	6.2 pH		
		naphthalene		rn.									
12		601-052-00-2	202-049-5	91-20-3	-	<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
	8	acenaphthylene	F02 010 0	0.200									
13	-		205-917-1	208-96-8		<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
14	8	acenaphthene	1			<0.05	mg/kg		<0.05	ma/ka	<0.000005 %		<lod< td=""></lod<>
14			201-469-6	83-32-9			iiig/kg			mg/kg	<0.000003 /8		
15	0	fluorene	201-695-5	86-73-7	_	<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< th=""></lod<>
\vdash	~	phenanthrene	401-090-0	00-73-7									
16	۲	Phononic	201-581-5	85-01-8		<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< th=""></lod<>
17	8	anthracene				<0.04	mg/kg		<0.04	mg/ka	<0.000004 %		<lod< th=""></lod<>
			204-371-1	120-12-7									

www.hazwasteonline.com

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
18	0	fluoranthene 205-912-4 206-44-0				<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< th=""></lod<>
19	۲	pyrene 204-927-3 129-00-0				<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
20		benzo[a]anthracen 601-033-00-9	e 200-280-6	56-55-3		<0.06	mg/kg		<0.06	mg/kg	<0.000006 %		<lod< td=""></lod<>
21		chrysene 601-048-00-0	205-923-4	218-01-9		<0.02	mg/kg		<0.02	mg/kg	<0.000002 %		<lod< td=""></lod<>
22		benzo[b]fluoranthene				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
23		benzo[k]fluoranthene 601-036-00-5 205-916-6 207-08-9				<0.02	mg/kg		<0.02	mg/kg	<0.000002 %		<lod< td=""></lod<>
24		benzo[a]pyrene; benzo[def]chrysene 601-032-00-3 200-028-5 50-32-8				<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
25	0	indeno[123-cd]pyrene 205-893-2 193-39-5			<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>	
26		dibenz[a,h]anthracene 601-041-00-2 200-181-8 53-70-3				<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
27	۵	benzo[ghi]perylene		191-24-2	t	<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
Total								0.0424 %	Г	1			

Key

	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Classification of sample: WS09-15/03/2022-0.60m

Sample details

Sample name: WS09-15/03/2022-0.60m LoW Code: Chapter:

Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites) 17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 0% No Moisture Correction applied (MC)

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	-	arsenic { arsenic trioxide }				18.4	mg/kg	1.32	24.294	mg/kg	0.00243 %		
\vdash	⊢	033-003-00-0 215-481-4 1327-53-3			-								
2	4	cadmium { cadmiu 048-002-00-0	<mark>m oxide</mark> } 215-146-2	1306-19-0	_	<0.1	mg/kg	1.142	<0.114	mg/kg	<0.0000114 %		<lod< td=""></lod<>
3	4		nium(III) compounds		_	51.3	mg/kg	1.462	74.978	mg/kg	0.0075 %		
4	4	chromium in chromium(VI) compounds { chromium (VI) compounds, with the exception of barium chromate and of compounds specified elsewhere in this Annex }				<0.3	mg/kg	2.27	<0.681	mg/kg	<0.0000681 %		<lod< th=""></lod<>
		024-017-00-8	oxide; copper (I) oxi		-								
5	4	029-002-00-X	215-270-7	1317-39-1	-	21	mg/kg	1.126	23.644	mg/kg	0.00236 %		
6	æ				1	18	mg/kg	1.56	28.077	mg/kg	0.0018 %		
0	_	082-004-00-2	231-846-0	7758-97-6		10	шу/ку	1.50	20.077	ing/kg	0.0010 %		
7	4	mercury { mercury		7407.04.7		0.1	mg/kg	1.353	0.135	mg/kg	0.0000135 %		
		080-010-00-X 231-299-8 7487-94-7 nickel { nickel chromate }									-		
8	•••	028-035-00-7	238-766-5	14721-18-7		24.7	mg/kg	2.976	73.514	mg/kg	0.00735 %		
9	2	selenium { nickel selenate }			\square	1	ma/ko	2.554	2.554 mg/kg	0.000255 %			
Ŭ		028-031-00-5	239-125-2	15060-62-5		. <u></u>		2.001	2.001				
10	4	zinc { zinc chromate }				63	mg/kg	2.774	174.771 mg/	mg/kg	g 0.0175 %		
		024-007-00-3	236-878-9	13530-65-9									
11	۲	PH PH			-	7.65	pН		7.65	pН	7.65 pH		
		naphthalene											
12		601-052-00-2	202-049-5	91-20-3		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
13	8	acenaphthylene	1			< 0.03	mg/kg		<0.03	ma/ka	<0.000003 %		<lod< td=""></lod<>
13		205-917-1 208-96-8			_	<0.05	iiig/kg		<0.00	iiig/kg	<0.000003 /8		
14	0	acenaphthene			<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>	
\vdash	0	201-469-6 83-32-9 fluorene			$\left \right $								
15			201-695-5	86-73-7		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
16	0	phenanthrene				<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< th=""></lod<>
		201-581-5 85-01-8											-
17	8	anthracene	204-371-1	120-12-7		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< th=""></lod<>

www.hazwasteonline.com

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
18	0	fluoranthene	205-912-4	206-44-0		<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< th=""></lod<>
19	۲	pyrene	204-927-3	129-00-0		<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
20		benzo[a]anthracen 601-033-00-9	e 200-280-6	56-55-3		<0.06	mg/kg		<0.06	mg/kg	<0.000006 %		<lod< td=""></lod<>
21		chrysene 601-048-00-0	205-923-4	218-01-9		<0.02	mg/kg		<0.02	mg/kg	<0.000002 %		<lod< td=""></lod<>
22		benzo[b]fluoranthe 601-034-00-4	ne 205-911-9	205-99-2		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
23		benzo[k]fluoranthei 601-036-00-5	ne 205-916-6	207-08-9		<0.02	mg/kg		<0.02	mg/kg	<0.000002 %		<lod< td=""></lod<>
24		benzo[a]pyrene; be 601-032-00-3	enzo[def]chrysene 200-028-5	50-32-8		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
25	0	indeno[123-cd]pyre		193-39-5		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
26		dibenz[a,h]anthrac		53-70-3		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
27	۵	benzo[ghi]perylene 205-883-8 191-24-2			t	<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
	!	203-003-0 131-24-2								Total:	0.0393 %	Г	1

Key

	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Classification of sample: WS10-15/03/2022-0.50m

Sample details

Sample name: WS10-15/03/2022-0.50m LoW Code: Chapter:

Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites) 17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 0% No Moisture Correction applied (MC)

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered	d data	Conv. Factor	Compound c	conc.	Classification value	MC Applied	Conc. Not Used
1	-	arsenic { arsenic tr				10.1	mg/kg	1.32	13.335	mg/kg	0.00133 %		
		033-003-00-0	215-481-4	1327-53-3									
2	4	cadmium {				<0.1	ma/ka	1.142	<0.114	mg/kg	<0.0000114 %		<lod< td=""></lod<>
		048-002-00-0	215-146-2	1306-19-0					-	31 3		_	_
3	4	chromium in chrom oxide (worst case)	nium(III) compounds } 215-160-9	; { • <mark>chromium(III)</mark>		50.6	mg/kg	1.462	73.955	mg/kg	0.0074 %		
			1	1	+								
4	4	compounds, with the of compounds spe	hium(VI) compounds he exception of barin cified elsewhere in t	um chromate and		<0.3	mg/kg	2.27	<0.681	mg/kg	<0.0000681 %		<lod< th=""></lod<>
		024-017-00-8										_	
5	4		oxide; copper (I) oxi	-		20	mg/kg	1.126	22.518	mg/kg	0.00225 %		
		029-002-00-X	215-270-7	1317-39-1									
6	4	lead { lead chroma			1	14	mg/kg	1.56	21.837	mg/kg	0.0014 %		
		082-004-00-2	231-846-0	7758-97-6									
7	4	mercury { mercury		7407.04.7		0.2	mg/kg	1.353	0.271	mg/kg	0.0000271 %		
		080-010-00-X	231-299-8	7487-94-7	-						1	-	
8	44	nickel { nickel chro 028-035-00-7	mate } 238-766-5	14721-18-7	-	25.8	mg/kg	2.976	76.788	mg/kg	0.00768 %		
		selenium { nickel s		14721-10-7	-								
9		028-031-00-5	239-125-2	15060-62-5		1	mg/kg	2.554	2.554	mg/kg	0.000255 %		
	æ			13000-02-3									
10		024-007-00-3	236-878-9	13530-65-9	-	88	mg/kg	2.774	244.125	mg/kg	0.0244 %		
		pH	200 010 0	10000 00 0	1								
11		P	1	PH	-	10.2	pН		10.2	рН	10.2 pH		
		naphthalene	1		1								
12		601-052-00-2	202-049-5	91-20-3	-	0.11	mg/kg		0.11	mg/kg	0.000011 %		
13		acenaphthylene	1			0.08	malka		0.08	malka	0.000008 %		
13			205-917-1	208-96-8		0.08	mg/kg		0.08	mg/kg	0.000008 %		
14		acenaphthene		^		0.59	mg/kg		0.59	mg/kg	0.000059 %		
14			201-469-6	83-32-9	-	0.59	шу/ку		0.59	шу/ку	0.000039 78		
15		fluorene				0.42	mg/kg		0.42	mg/kg	0.000042 %		
			201-695-5	86-73-7									
16	۰	phenanthrene				2.28	mg/kg		2.28	mg/kg	0.000228 %		
			201-581-5	85-01-8						59			
17	•	anthracene	204-371-1	120-12-7		0.72	mg/kg		0.72	mg/kg	0.000072 %		

www.hazwasteonline.com

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
18	8	fluoranthene	205-912-4	206-44-0		4.27 mg/kg	9	4.27 mg/kg	0.000427 %		
19	0	pyrene	204-927-3	129-00-0		3.43 mg/kg	9	3.43 mg/kg	0.000343 %		
20		benzo[a]anthracen 601-033-00-9	e 200-280-6	56-55-3		1.3 mg/kg	9	1.3 mg/kg	0.00013 %		
21		chrysene 601-048-00-0	205-923-4	218-01-9		1.32 mg/kg	9	1.32 mg/kg	0.000132 %		
22		benzo[b]fluoranthe 601-034-00-4	nzo[b]fluoranthene			1.51 mg/kg	9	1.51 mg/kg	0.000151 %		
23		benzo[k]fluoranthe 601-036-00-5	ne 205-916-6	207-08-9		0.59 mg/kg	9	0.59 mg/kg	0.000059 %		
24		benzo[a]pyrene; be 601-032-00-3	enzo[def]chrysene 200-028-5	50-32-8		1.01 mg/kg	9	1.01 mg/kg	0.000101 %		
25	8	indeno[123-cd]pyre	ene 205-893-2	193-39-5		0.76 mg/kg	9	0.76 mg/kg	0.000076 %		
26		dibenz[a,h]anthrac		53-70-3		0.13 mg/kg	3	0.13 mg/kg	0.000013 %		
27	0	benzo[ghi]perylene		191-24-2		0.65 mg/kg	9	0.65 mg/kg	0.000065 %		
	I	205-883-8 191-24-2						Total:	0.0468 %		

Key

itey	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
0	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Classification of sample: WS11-15/03/2022-0.20m

Sample details

Sample name: WS11-15/03/2022-0.20m LoW Code: Chapter:

Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites) 17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 0% No Moisture Correction applied (MC)

#		EU CLP index	Determinand EC Number	CAS Number	CLP Note	User entered	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	4	arsenic { arsenic tr	i <mark>oxide</mark> }			7.7	mg/kg	1.32	10.167	mg/kg	0.00102 %		
		033-003-00-0	215-481-4	1327-53-3				-		5.5			
2	4	cadmium {	•			<0.1	ma/ka	1.142	<0.114	mg/kg	<0.0000114 %		<lod< td=""></lod<>
		048-002-00-0	215-146-2	1306-19-0						5.3			
3	4	chromium in chrom oxide (worst case)	nium(III) compounds } 215-160-9	s {	-	39	mg/kg	1.462	57.001	mg/kg	0.0057 %		
		- h		1	-								
4	4	compounds, with the of compounds spe	nium(VI) compounds he exception of bari cified elsewhere in t	um chromate and		<0.3	mg/kg	2.27	<0.681	mg/kg	<0.0000681 %		<lod< td=""></lod<>
		024-017-00-8											
5	4		oxide; copper (I) oxi			46	ma/ka	1.126	51.791	mg/kg	0.00518 %		
		029-002-00-X	215-270-7	1317-39-1									
6	4	lead { lead chroma			1	9	mg/kg	1.56	14.038	mg/kg	0.0009 %		
		082-004-00-2	231-846-0	7758-97-6									
7	4	mercury { mercury		1		0.1	mg/kg	1.353	0.135	mg/kg	0.0000135 %		
		080-010-00-X	231-299-8	7487-94-7								-	
8	4			44704 40 7		31.3	mg/kg	2.976	93.157	mg/kg	0.00932 %		
	-	028-035-00-7	238-766-5	14721-18-7								-	
9	44	selenium { nickel s 028-031-00-5	239-125-2	15060-62-5		1	mg/kg	2.554	2.554	mg/kg	0.000255 %		
	•	zinc { zinc chromat		15060-62-5									
10	44	024-007-00-3	le } 236-878-9	13530-65-9		100	mg/kg	2.774	277.415	mg/kg	0.0277 %		
		TPH (C6 to C40) p		13330-03-9									
11		TFΠ (C0 t0 C40) μ		ТРН		<38	mg/kg		<38	mg/kg	<0.0038 %		<lod< td=""></lod<>
		tert-butyl methyl et	her: MTRE:										
12		2-methoxy-2-methy	, ,			<0.002	mg/kg		<0.002	mg/kg	<0.000002 %		<lod< td=""></lod<>
		603-181-00-X	216-653-1	1634-04-4									
13		benzene				<0.003	mg/kg		<0.003	ma/ka	<0.000003 %		<lod< td=""></lod<>
13		601-020-00-8	200-753-7	71-43-2		<0.003	iiig/kg		<0.005	mg/kg	<0.0000003 78		LOD
14		toluene				<0.003	mg/kg	7	<0.003	ma/ka	<0.000003 %		<lod< td=""></lod<>
		601-021-00-3	203-625-9	108-88-3									
15	۲	ethylbenzene				<0.003	mg/kg		<0.003	mg/ka	<0.000003 %		<lod< td=""></lod<>
Ĺ		601-023-00-4	202-849-4	100-41-4			5.5			5.5			-
1		xylene				0.040			0.040		0.0000040.00		
16		601-022-00-9	202-422-2 [1] 203-396-5 [2]	95-47-6 [1] 106-42-3 [2]		<0.013	mg/kg		<0.013	mg/kg	<0.0000013 %		<lod< td=""></lod<>

#	number 203-576-3 [3] 108-38-3 [3] 215-535-7 [4] 1330-20-7 [4]			CLP Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
		EC Number	CAS Number	CLP			Factor			value	MC /	Used
17 •	рН				9.85	pН		9.85	pН	9.85 pH		
			PH		3.00			3.05	рп 	9.00 pm		
18	naphthalene				<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
	601-052-00-2	202-049-5	91-20-3									
19	acenaphthylene	205-917-1	208-96-8		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
20 •	acenaphthene	201-469-6	83-32-9		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
21 •	fluorene		1		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
22 ®	phenanthrene	201-695-5	86-73-7		<0.01	mg/kg		<0.01	ma/ka	<0.000001 %		<lod< td=""></lod<>
		201-581-5	85-01-8									
23 ®	anthracene	204-371-1	120-12-7		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
24 •	fluoranthene		1		-0.01	malka		-0.01	malka	-0.000001.9/		
24	pyrene	205-912-4	206-44-0		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
25		204-927-3	129-00-0		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
26	benzo[a]anthracer 601-033-00-9	ne 200-280-6	56-55-3	_	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
27	chrysene 601-048-00-0	205-923-4	218-01-9		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
	benzo[b]fluoranthe	ene			0.04							
28	601-034-00-4	205-911-9	205-99-2	-	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
29	benzo[k]fluoranthe	205-916-6	207-08-9		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
30		enzo[def]chrysene 200-028-5	50-32-8		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
31 •	indeno[123-cd]pyr	ene			<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
		205-893-2	193-39-5	_								
32	dibenz[a,h]anthrac 601-041-00-2	200-181-8	53-70-3		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
	1. T.1.7. 1		p3-70-3	-								
33 ®	benzolgnijbervien	205-883-8	191-24-2	_	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
34	phenol				<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
	604-001-00-2	203-632-7	108-95-2	_								
35	1,1-dichloroethane	e and 1,2-dichloroe	107-06-2, 75-34-3		<0.007	mg/kg		<0.007	mg/kg	<0.000007 %		<lod< td=""></lod<>
	tetrachloroethylen	200-863-5 e		+								
36	602-028-00-4	204-825-9	127-18-4	-	<0.003	mg/kg		<0.003	mg/kg	<0.000003 %		<lod< td=""></lod<>
37	carbon tetrachlorid	le; tetrachlorometh	ane		<0.004	mg/kg		<0.004	mg/kg	<0.0000004 %		<lod< td=""></lod<>
	602-008-00-5	200-262-8	56-23-5	_								
38	trichloroethylene;		50.04.0		<0.003	mg/kg		<0.003	mg/kg	<0.0000003 %		<lod< td=""></lod<>
39	602-027-00-9 vinyl chloride; chlo	201-167-4 proethylene	79-01-6		<0.002	mg/kg		<0.002	mg/kg	<0.000002 %		<lod< td=""></lod<>
	602-023-00-7	200-831-0	75-01-4		<0.00Z	mg/kg		<0.00Z	ing/kg			~200
40	hexachlorobenzer	e 204-273-9	118-74-1		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
41 .	dichlorodifluorome				<0.002	mg/kg		<0.002	mg/kg	<0.000002 %		<lod< td=""></lod<>
42	chloromethane; m		75-71-8	+	<0.003	mg/kg		<0.003	ma/ka	<0.000003 %		<lod< td=""></lod<>
	602-001-00-7 bromomethane; m	200-817-4 ethylbromide	74-87-3	-								
43	602-002-00-2	200-813-2	74-83-9		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
44	chloroethane 602-009-00-0	200-830-5	75-00-3		<0.002	mg/kg		<0.002	mg/kg	<0.0000002 %		<lod< td=""></lod<>

#			Determinand		CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
		EU CLP index number	EC Number	CAS Number	CLP		1 actor		value	MC /	Useu
45	8	trichlorofluorometh	ane 200-892-3	75-69-4		<0.002 mg/kg		<0.002 mg/kg	<0.000002 %		<lod< td=""></lod<>
40			e; vinylidene chlorid			0.000 #		0.000 (H	
46				75-35-4		<0.006 mg/kg		<0.006 mg/kg	<0.0000006 %		<lod< td=""></lod<>
47		dichloromethane; n	nethylene chloride			<0.007 mg/kg		<0.007 mg/kg	<0.000007 %		<lod< td=""></lod<>
47		602-004-00-3	200-838-9	75-09-2		<0.007 mg/kg		<0.007 mg/kg	<0.0000007 %		<lod< td=""></lod<>
48	8	2,2-dichloropropan	e 209-832-0	594-20-7		<0.004 mg/kg		<0.004 mg/kg	<0.0000004 %		<lod< td=""></lod<>
49		bromochlorometha		001201	1	-0.002 malka		-0.002 ma/ka	.0.0000002.0/	F	<lod< td=""></lod<>
49			200-826-3	74-97-5		<0.003 mg/kg		<0.003 mg/kg	<0.000003 %		<lod< td=""></lod<>
50		chloroform; trichlor	omethane			<0.003 mg/kg		<0.003 mg/kg	<0.000003 %		<lod< td=""></lod<>
		602-006-00-4	200-663-8	67-66-3		<0.000 mg/ng					.205
51		1,1,1-trichloroethar	ne; methyl chlorofori	m		<0.003 mg/kg		<0.003 mg/kg	<0.000003 %		<lod< td=""></lod<>
		602-013-00-2	200-756-3	71-55-6							_
52		1,1-dichloropropen				<0.003 mg/kg		<0.003 mg/kg	<0.000003 %		<lod< td=""></lod<>
				563-58-6							
53			e; propylene dichlor			<0.006 mg/kg		<0.006 mg/kg	<0.0000006 %		<lod< td=""></lod<>
			201-152-2	78-87-5							
54		dibromomethane				<0.003 mg/kg		<0.003 mg/kg	<0.000003 %		<lod< td=""></lod<>
			200-824-2	74-95-3							
55	۲	bromodichlorometh		75-27-4		<0.003 mg/kg		<0.003 mg/kg	<0.000003 %		<lod< td=""></lod<>
			e; [1] (Z)-1,3-dichlor		-						
56				542-75-6 [1]		<0.004 mg/kg		<0.004 mg/kg	<0.0000004 %		<lod< td=""></lod<>
			208-826-5 [1] 233-195-8 [2]	10061-01-5 [2]		letter inging		101001	1010000001.70		
		trans-1,3-dichlorop				0.000 //		0.000 //			1.05
57		•	431-460-4	10061-02-6	-	<0.003 mg/kg		<0.003 mg/kg	<0.000003 %		<lod< td=""></lod<>
		1,1,2-trichloroethar				0.000 #		0.000 "			1.05
58			201-166-9	79-00-5		<0.003 mg/kg		<0.003 mg/kg	<0.000003 %		<lod< td=""></lod<>
59		1,3-dichloropropan	e			.0.002 mallia		.0.002 malka	.0.000002.0/		<lod< td=""></lod<>
59			205-531-3	142-28-9		<0.003 mg/kg		<0.003 mg/kg	<0.000003 %		<lod< td=""></lod<>
60		dibromochlorometh	hane			<0.003 mg/kg		<0.003 mg/kg	<0.000003 %		<lod< td=""></lod<>
00			204-704-0	124-48-1		<0.000 mg/kg		<0.000 mg/kg	<0.0000003 /8		LOD
61		1,2-dibromoethane				<0.003 mg/kg		<0.003 mg/kg	<0.000003 %		<lod< td=""></lod<>
<u> </u>		602-010-00-6	203-444-5	106-93-4							
62		chlorobenzene				<0.003 mg/kg		<0.003 mg/kg	<0.000003 %		<lod< td=""></lod<>
		602-033-00-1	203-628-5	108-90-7							
63	Θ	1,1,1,2-tetrachloroe				<0.003 mg/kg		<0.003 mg/kg	<0.000003 %		<lod< td=""></lod<>
L			211-135-1	630-20-6	_	3 3					
64		bromoform; tribrom				<0.003 mg/kg		<0.003 mg/kg	<0.000003 %		<lod< td=""></lod<>
<u> </u>			200-854-6	75-25-2	-					H	
65		1,1,2,2-tetrachloroe 602-015-00-3	201-197-8	79-34-5		<0.003 mg/kg		<0.003 mg/kg	<0.000003 %		<lod< td=""></lod<>
66		bromobenzene				.0.000 mallia		.0.000 malka	.0.000002.0/		1.00
66		602-060-00-9	203-623-8	108-86-1	1	<0.002 mg/kg		<0.002 mg/kg	<0.000002 %		<lod< td=""></lod<>
67		1,2,3-trichloropropa	ane			<0.004 mg/kg		<0.004 mg/kg	<0.0000004 %		<lod< td=""></lod<>
		602-062-00-X	202-486-1	96-18-4		<0.004 mg/kg		<0.004 mg/kg	<0.000004 /8		
68		mesitylene; 1,3,5-tr	imethylbenzene			<0.003 mg/kg		<0.003 mg/kg	<0.000003 %		<lod< td=""></lod<>
		601-025-00-5	203-604-4	108-67-8	1						
69	۲	tert-butylbenzene				<0.005 mg/kg		<0.005 mg/kg	<0.0000005 %		<lod< td=""></lod<>
Ĺ			202-632-4	98-06-6							
70		1,2,4-trimethylbenz				<0.006 mg/kg		<0.006 mg/kg	<0.0000006 %		<lod< td=""></lod<>
			202-436-9	95-63-6		5.15		3.49		Ц	
71		sec-butylbenzene				<0.004 mg/kg		<0.004 mg/kg	<0.0000004 %		<lod< td=""></lod<>
			205-227-0	135-98-8	-					\vdash	
72	•	4-isopropyltoluene	202-796-7	99-87-6	-	<0.004 mg/kg		<0.004 mg/kg	<0.0000004 %		<lod< td=""></lod<>
70		1,3-dichlorbenzene		*	1	.0.004 "		.0.004	.0.0000001.0/		1.02
73			208-792-1	541-73-1	1	<0.004 mg/kg		<0.004 mg/kg	<0.0000004 %		<lod< td=""></lod<>
				۸	-						

#			Determinand		Note	User entered	d data	Conv.	Compound	conc.	Classification	Applied	Conc. Not
		EU CLP index number	EC Number	CAS Number	CLP			Factor			value	MC A	Used
74		1,4-dichlorobenzen 602-035-00-2	e; p-dichlorobenze 203-400-5	ne 106-46-7		<0.004	mg/kg		<0.004	mg/kg	<0.0000004 %		<lod< td=""></lod<>
75	0	n-butylbenzene	203-209-7	104-51-8		<0.004	mg/kg		<0.004	mg/kg	<0.0000004 %		<lod< td=""></lod<>
76		1,2-dichlorobenzen 602-034-00-7	e; o-dichlorobenze 202-425-9	ne 95-50-1		<0.004	mg/kg		<0.004	mg/kg	<0.000004 %		<lod< td=""></lod<>
77		1,2-dibromo-3-chlo 602-021-00-6	ropropane 202-479-3	96-12-8		<0.004	mg/kg		<0.004	mg/kg	<0.0000004 %		<lod< td=""></lod<>
78		1,2,4-trichlorobenz 602-087-00-6	ene 204-428-0	120-82-1		<0.007	mg/kg		<0.007	mg/kg	<0.000007 %		<lod< td=""></lod<>
79	۲	hexachlorobutadier	ne 201-765-5	87-68-3		<0.004	mg/kg		<0.004	mg/kg	<0.000004 %		<lod< td=""></lod<>
80		1,2,3-trichlorobenz		87-61-6		<0.007	mg/kg		<0.007	mg/kg	<0.000007 %		<lod< td=""></lod<>
81		styrene 601-026-00-0	202-851-5	100-42-5		<0.003	mg/kg		<0.003	mg/kg	<0.000003 %		<lod< td=""></lod<>
		2-chlorophenol; [1] chlorophenol [4] 604-008-00-0	4-chlorophenol; [2] 202-433-2 [1]	95-57-8 [1]		0.01			0.04		0.000004.0/		1.05
82			203-402-6 [2] 203-582-6 [3] 246-691-4 [4]	106-48-9 [2] 108-43-0 [3] 25167-80-0 [4]		<0.01	mg/kg		<0.01	тід/кд	<0.000001 %		<lod< td=""></lod<>
83	8	2-nitrophenol	201-857-5	88-75-5		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
84		2,4-dichlorophenol 604-011-00-7	204-429-6	120-83-2		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
85		[4] 2,6-xylenol; [5] x		enol; [3] 2,3-xylenol; ,5)-xylenol [7] 95-65-8 [1] 95-87-4 [2] 105-67-9 [3] 526-75-0 [4] 576-26-1 [5] 1300-71-6 [6] 71975-58-1 [7]	-	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
86		2,4,5-trichlorophen 604-017-00-X	ol 202-467-8	95-95-4		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
87		2,4,6-trichlorophen 604-018-00-5	ol 201-795-9	88-06-2		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
88		chlorocresol; 4-chlo 604-014-00-3	oro-m-cresol; 4-chlo 200-431-6	59-50-7		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
89		4-nitrophenol; p-nit 609-015-00-2	rophenol 202-811-7	100-02-7		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
90		pentachlorophenol 604-002-00-8	201-778-6	87-86-5		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
91	Θ	2-chloronaphthaler	ne 202-079-9	91-58-7		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
92	8	2-methyl naphthale	ne 202-078-3	91-57-6		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
93		bis(2-ethylhexyl) pł DEHP 607-317-00-9	nthalate; di-(2-ethyll	hexyl) phthalate;		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
94		BBP; benzyl butyl p 607-430-00-3	ohthalate 201-622-7	85-68-7		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
95		dibutyl phthalate; D 607-318-00-4	BP 201-557-4	84-74-2		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
96	0	di-n-octyl phthalate	204-214-7	117-84-0		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
97	Θ	diethyl phthalate	201-550-6	84-66-2		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
98	8	dimethyl phthalate	205-011-6	131-11-3		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>

Page 34 of 71

#			Determinand		CLP Note	User entered	data	Conv. Factor	Compound co	onc.	Classification value	MC Applied	Conc. Not Used
		EU CLP index number	EC Number	CAS Number	CLP			Factor			value	MC /	USeu
		2,4-dinitrotoluene;	[1] dinitrotoluene [2]										
99			204-450-0 [1] 246-836-1 [2]	121-14-2 [1] 25321-14-6 [2]		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
100		2,6-dinitrotoluene	210-106-0	606-20-2		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
101	•	4-bromophenylphe	nylether			<0.01	mg/kg		<0.01	mg/kg	<0.000001 %	E	<lod< td=""></lod<>
			202-952-4	101-55-3	-							_	
102		4-chloroaniline			_	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
	_		203-401-0	106-47-8	-							-	
103	•	4-chlorophenylphe		7005 70 0	-	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
		azobenzene	230-281-7	7005-72-3	-								
104			203-102-5	103-33-3	-	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
\vdash	-	bis(2-chloroethoxy)		103-33-3	-								
105			203-920-2	111-91-1		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
\rightarrow		bis(2-chloroethyl) e		111-31-1	-								
106			203-870-1	111-44-4		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
		carbazole	200 010 1										
107	Ŭ		201-696-0	86-74-8		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
	•	dibenzofuran											
108			205-071-3	132-64-9		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
400		hexachlorocyclope	ntadiene			0.04			0.04		0.000004.0/		1.00
109		602-078-00-7	201-029-3	77-47-4		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
110		hexachloroethane				-0.01	malka		-0.01	ma/ka	-0.000001.9/		<lod< td=""></lod<>
110			200-666-4	67-72-1	-	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
111		3,5,5-trimethylcyclo	hex-2-enone; isoph	iorone		<0.01	ma/ka		<0.01	ma/ka	<0.000001 %		<lod< td=""></lod<>
		606-012-00-8	201-126-0	78-59-1		<0.01	mg/kg		<0.01	mg/kg	<0.000001 /8		LOD
112		nitrosodipropylamir	ne			<0.01	mg/kg		<0.01	ma/ka	<0.000001 %		<lod< td=""></lod<>
112		612-098-00-8	210-698-0	621-64-7		<0.01	ing/kg		<0.01	iiig/itg	<0.000001 /0		LOD
113		nitrobenzene				<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
			202-716-0	98-95-3			5.5			<u> </u>			
		1,2-dichloroethylen trans-dichloroethyle	e; [1] cis-dichloroet ene [3]	nylene; [2]									
114			208-750-2 [1] 205-859-7 [2] 205-860-2 [3]	540-59-0 [1] 156-59-2 [2] 156-60-5 [3]		<0.006	mg/kg		<0.006	mg/kg	<0.0000006 %		<lod< td=""></lod<>
		cumene; [1] propyll	benzene [2]										
115			202-704-5 [1] 203-132-9 [2]	98-82-8 [1] 103-65-1 [2]		<0.007	mg/kg		<0.007	mg/kg	<0.000007 %		<lod< td=""></lod<>
] 3-chlorotoluene; [2		T								
116			202-424-3 [1] 203-580-5 [2] 203-397-0 [3] 246-698-2 [4]	95-49-8 [1] 108-41-8 [2] 106-43-4 [3] 25168-05-2 [4]		<0.006	mg/kg		<0.006	mg/kg	<0.000006 %		<lod< td=""></lod<>
		m-cresol; [1] o-cres	sol; [2] p-cresol; [3]										
117			203-577-9 [1] 202-423-8 [2] 203-398-6 [3] 215-293-2 [4]	108-39-4 [1] 95-48-7 [2] 106-44-5 [3] 1319-77-3 [4]	_	<0.02	mg/kg		<0.02	mg/kg	<0.000002 %		<lod< td=""></lod<>
\vdash			n-nitroaniline; [2] p-r		+								
118		612-012-00-9	201-855-4 [1] 202-729-1 [2] 202-810-1 [3]	88-74-4 [1] 99-09-2 [2] 100-01-6 [3]	2	<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
				<u>l</u>						Total:	0.0541 %		

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
ND	Not detected
CLP: Note 1	Only the metal concentration has been used for classification

Classification of sample: WS12-15/03/2022-0.60m

Sample details

Sample name: WS12-15/03/2022-0.60m LoW Code: Chapter:

Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites) 17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 0% No Moisture Correction applied (MC)

#			Determinand		CLP Note	User entered	d data	Conv. Factor	Compound	conc.	Classification	MC Applied	Conc. Not
		EU CLP index number	EC Number	CAS Number	CLP			Factor			value	MC /	Used
1	æ	arsenic { arsenic tr	•			21.9	mg/kg	1.32	28.915	mg/kg	0.00289 %		
			215-481-4	1327-53-3								_	
2	4	cadmium { cadmiu	•	1000 10 0	_	<0.1	mg/kg	1.142	<0.114	mg/kg	<0.0000114 %		<lod< td=""></lod<>
	-	048-002-00-0	215-146-2	1306-19-0	-							-	
3	4	oxide (worst case)				54.3	mg/kg	1.462	79.362	mg/kg	0.00794 %		
			215-160-9	1308-38-9	-								
4	4	compounds, with the of compounds spectrum of compounds spectrum of the spectru	hium(VI) compounds he exception of bari cified elsewhere in t	um chromate and		<0.3	mg/kg	2.27	<0.681	mg/kg	<0.0000681 %		<lod< th=""></lod<>
		024-017-00-8										-	
5	4		oxide; copper (I) oxi			19	mg/kg	1.126	21.392	mg/kg	0.00214 %		
			215-270-7	1317-39-1	-							-	
6	4	lead { <mark>lead chroma</mark> 082-004-00-2	231-846-0	7758-97-6	1	23	mg/kg	1.56	35.876	mg/kg	0.0023 %		
7	2	mercury { mercury	1			<0.1		1 252	<0.135		<0.0000135 %		<lod< td=""></lod<>
<i>'</i>		080-010-00-X	231-299-8	7487-94-7	_	<0.1	тід/кд	1.353	<0.135	mg/kg	<0.0000135 %		<lod< td=""></lod<>
8	4	nickel { <mark>nickel chro</mark>	mate }			26.2	ma/ka	2.976	77.978	mg/kg	0.0078 %		
_		028-035-00-7	238-766-5	14721-18-7									
9			,	1		2	mg/kg	2.554	5.108	mg/kg	0.000511 %		
			239-125-2	15060-62-5	-							_	
10	4	zinc { zinc chromat		40500.05.0		62	mg/kg	2.774	171.997	mg/kg	0.0172 %		
		024-007-00-3	236-878-9	13530-65-9	-								
11	0	pH	1	PH	-	7.19	pН		7.19	pН	7.19 pH		
		naphthalene			-								
12		601-052-00-2	202-049-5	91-20-3	-	<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
13		acenaphthylene	,			<0.03	mg/kg		<0.03	malka	<0.000003 %		<lod< td=""></lod<>
13			205-917-1	208-96-8		<0.03	шу/ку		<0.03	тту/ку	<0.000003 %		<lod< td=""></lod<>
14		acenaphthene				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
Ľ			201-469-6	83-32-9									
15	۲	fluorene	bo4 005 5	00.70.7		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< th=""></lod<>
<u> </u>			201-695-5	86-73-7	-							-	
16	•	phenanthrene	201-581-5	85-01-8		<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< th=""></lod<>
		anthracene	-0.0010	00010	\vdash								
17			204-371-1	120-12-7		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< th=""></lod<>
L		<u> </u>											

www.hazwasteonline.com

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
18	Θ	fluoranthene	205-912-4	206-44-0		<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< th=""></lod<>
19	۲	pyrene	204-927-3	129-00-0		<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
20		benzo[a]anthracen 601-033-00-9	e 200-280-6	56-55-3		<0.06	mg/kg		<0.06	mg/kg	<0.000006 %		<lod< td=""></lod<>
21		chrysene 601-048-00-0	205-923-4	218-01-9		<0.02	mg/kg		<0.02	mg/kg	<0.000002 %		<lod< td=""></lod<>
22		benzo[b]fluoranthe 601-034-00-4	ne 205-911-9	205-99-2		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
23		benzo[k]fluoranthei 601-036-00-5	ne 205-916-6	207-08-9		<0.02	mg/kg		<0.02	mg/kg	<0.000002 %		<lod< td=""></lod<>
24		benzo[a]pyrene; be 601-032-00-3		50-32-8		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
25	8	indeno[123-cd]pyre				<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
26		dibenz[a,h]anthrac		53-70-3		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
27	0	benzo[ghi]perylene		191-24-2	t	<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
		1						Total:	0.0409 %	Г	1		

Key

	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Classification of sample: WS13-16/03/2022-0.50m

Sample details

Sample name: WS13-16/03/2022-0.50m LoW Code: Chapter:

Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites) 17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 0% No Moisture Correction applied (MC)

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered	d data	Conv. Factor	Compound c	onc.	Classification value	MC Applied	Conc. Not Used
1	4	arsenic { arsenic tr	i <mark>oxide</mark> }			6.7	mg/kg	1.32	8.846	ma/ka	0.000885 %		
		033-003-00-0	215-481-4	1327-53-3				-		5.5			
2	4	cadmium { <mark>cadmiu</mark>	•			<0.1	ma/ka	1.142	<0.114	mg/kg	<0.0000114 %		<lod< td=""></lod<>
		048-002-00-0	215-146-2	1306-19-0					-				
3	4	chromium in chrom <mark>oxide (worst case)</mark>			_	40.9	mg/kg	1.462	59.778	mg/kg	0.00598 %		
-	-		215-160-9	1308-38-9	-								
4	4	compounds, with the of compounds spe	nium(VI) compounds he exception of bari cified elsewhere in t	um chromate and		<0.3	mg/kg	2.27	<0.681	mg/kg	<0.0000681 %		<lod< td=""></lod<>
		024-017-00-8											
5	4		oxide; copper (I) oxi			23	ma/ka	1.126	25.895	mg/kg	0.00259 %		
		029-002-00-X	215-270-7	1317-39-1									
6	4	lead { lead chroma			1	163	mg/kg	1.56	254.25	mg/kg	0.0163 %		
		082-004-00-2	231-846-0	7758-97-6									
7	4	mercury { mercury				<0.1	mg/kg	1.353	<0.135	mg/kg	<0.0000135 %		<lod< td=""></lod<>
		080-010-00-X	231-299-8	7487-94-7								_	
8	4			44704 40 7		11.3	mg/kg	2.976	33.632	mg/kg	0.00336 %		
-	-	028-035-00-7	238-766-5	14721-18-7									
9	44	selenium { nickel s 028-031-00-5	239-125-2	15060-62-5		<1	mg/kg	2.554	<2.554	mg/kg	<0.000255 %		<lod< td=""></lod<>
	•	zinc { zinc chromat		15060-62-5	-							-	
10	44	024-007-00-3	236-878-9	13530-65-9		118	mg/kg	2.774	327.349	mg/kg	0.0327 %		
		TPH (C6 to C40) p		13330-03-9									
11		11 11 (00 to 040) p		ТРН		127	mg/kg		127	mg/kg	0.0127 %		
12		tert-butyl methyl et 2-methoxy-2-methy	ylpropane			<0.002	mg/kg		<0.002	mg/kg	<0.000002 %		<lod< td=""></lod<>
		603-181-00-X	216-653-1	1634-04-4									
13		benzene	1			<0.003	mg/kg		<0.003	mg/kg	<0.0000003 %		<lod< td=""></lod<>
		601-020-00-8	200-753-7	71-43-2	-							_	
14		toluene	002 625 0	400.00.0		<0.003	mg/kg		<0.003	mg/kg	<0.000003 %		<lod< td=""></lod<>
-		601-021-00-3	203-625-9	108-88-3	-							-	
15		ethylbenzene 601-023-00-4	202-849-4	100-41-4		<0.003	mg/kg		<0.003	mg/kg	<0.000003 %		<lod< td=""></lod<>
-		xylene	202-043-4	100-41-4									
16		601-022-00-9	202-422-2 [1] 203-396-5 [2]	95-47-6 [1] 106-42-3 [2]		<0.013	mg/kg		<0.013	mg/kg	<0.0000013 %		<lod< td=""></lod<>

#			Determinand		CLP Note	User entered	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
		EU CLP index number	EC Number	CAS Number	CLP			1 dotor			Value	MC	0300
			203-576-3 [3] 215-535-7 [4]	108-38-3 [3] 1330-20-7 [4]									
17	۲	рН		PH		7.94	рН		7.94	pН	7.94 pH		
18		naphthalene				0.18	mg/kg		0.18	mg/kg	0.000018 %	П	
_		601-052-00-2 acenaphthylene	202-049-5	91-20-3									
19	۲		205-917-1	208-96-8		0.08	mg/kg		0.08	mg/kg	0.000008 %		
20	8	acenaphthene	004 400 0			0.47	mg/kg		0.47	mg/kg	0.000047 %		
		fluorene	201-469-6	83-32-9		0.55			0.55		0.000055.0/	\square	
21			201-695-5	86-73-7		0.55	mg/kg		0.55	mg/kg	0.000055 %		
22	•	phenanthrene	201-581-5	85-01-8		3.98	mg/kg		3.98	mg/kg	0.000398 %		
23		anthracene	201 001 0	00010		0.92			0.93	malka	0.000083 %		
23			204-371-1	120-12-7		0.83	mg/kg		0.83	mg/kg	0.000083 %		
24	8	fluoranthene	005 040 4	000 44 0		4.122	mg/kg		4.122	mg/kg	0.000412 %		
-		pyrene	205-912-4	206-44-0	-							+	
25	-		204-927-3	129-00-0		4.123	mg/kg		4.123	mg/kg	0.000412 %		
26		benzo[a]anthracen 601-033-00-9	e 200-280-6	56-55-3		2.071	mg/kg		2.071	mg/kg	0.000207 %		
27		chrysene				1.953	mg/kg		1.953	mg/kg	0.000195 %	Π	
	-	601-048-00-0	205-923-4	218-01-9									
28		benzo[b]fluoranthe 601-034-00-4	ne 205-911-9	205-99-2		2.442	mg/kg		2.442	mg/kg	0.000244 %		
29	1	benzo[k]fluoranthe	ļ			0.040			0.040	m a// a	0.0000040.8/	H	
29		601-036-00-5	205-916-6	207-08-9		0.949	mg/kg		0.949	mg/kg	0.0000949 %		
30		benzo[a]pyrene; be 601-032-00-3	enzo[def]chrysene 200-028-5	50-32-8		2.277	mg/kg		2.277	mg/kg	0.000228 %		
31	8	indeno[123-cd]pyre	ene	00 02 0		1.147	mg/kg		1.147	mg/kg	0.000115 %		
L			205-893-2	193-39-5									
32		dibenz[a,h]anthrac 601-041-00-2	ene 200-181-8	53-70-3		0.386	mg/kg		0.386	mg/kg	0.0000386 %		
		benzo[ghi]perylene		00.00	+	4.040			4.040		0.0004.05.0/		
33			205-883-8	191-24-2		1.246	mg/kg		1.246	mg/kg	0.000125 %		
34		phenol 604-001-00-2	203-632-7	108-95-2		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
	8		and 1,2-dichloroet		-								
35			203-458-1, 200-863-5	107-06-2, 75-34-3		<0.007	mg/kg		<0.007	mg/kg	<0.000007 %		<lod< td=""></lod<>
36		tetrachloroethylene		127-18-4		<0.003	mg/kg		<0.003	mg/kg	<0.000003 %		<lod< td=""></lod<>
37	\mid		le; tetrachlorometha			<0.004	mg/kg		<0.004	ma/ka	<0.0000004 %		<lod< td=""></lod<>
Ľ		602-008-00-5	200-262-8	56-23-5	1								
38		trichloroethylene; t 602-027-00-9	richloroethene 201-167-4	79-01-6		<0.003	mg/kg		<0.003	mg/kg	<0.000003 %		<lod< td=""></lod<>
39		vinyl chloride; chlo	roethylene			<0.002	mg/kg		<0.002	mg/kg	<0.000002 %	Ħ	<lod< td=""></lod<>
\vdash		602-023-00-7 hexachlorobenzen	200-831-0 e	75-01-4	+							$\left \right $	
40		602-065-00-6	204-273-9	118-74-1		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
41	۲	dichlorodifluorome	thane 200-893-9	75-71-8	-	<0.002	mg/kg		<0.002	mg/kg	<0.0000002 %		<lod< td=""></lod<>
42		chloromethane; me	ethyl chloride		Ţ	<0.003	mg/kg		<0.003	mg/kg	<0.000003 %	Π	<lod< td=""></lod<>
\vdash		602-001-00-7 bromomethane; m	200-817-4 ethylbromide	74-87-3	-							$\left \right $	
43		602-002-00-2	200-813-2	74-83-9		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
44		chloroethane 602-009-00-0	200-830-5	75-00-3		<0.002	mg/kg		<0.002	mg/kg	<0.000002 %		<lod< td=""></lod<>
L	1	002-00-00-0	-00 000-0	10000	_								

#			Determinand		CLP Note	User entered data	Conv.	Compound conc.	Classification	MC Applied	Conc. Not
		EU CLP index number	EC Number	CAS Number	CLP		Factor		value	MC 4	Used
45	8	trichlorofluorometh	ane 200-892-3	75-69-4		<0.002 mg/kg		<0.002 mg/kg	<0.000002 %		<lod< td=""></lod<>
46			e; vinylidene chloric 200-864-0	le 75-35-4		<0.006 mg/kg		<0.006 mg/kg	<0.0000006 %	\square	<lod< td=""></lod<>
47		dichloromethane; n	nethylene chloride	75-09-2		<0.007 mg/kg		<0.007 mg/kg	<0.000007 %	Ħ	<lod< td=""></lod<>
48	0	2,2-dichloropropan			+	<0.004 mg/kg		<0.004 mg/kg	<0.0000004 %	H	<lod< td=""></lod<>
49	0	bromochlorometha	ne	594-20-7	-	<0.003 mg/kg		<0.003 mg/kg	<0.000003 %		<lod< td=""></lod<>
50		chloroform; trichlor	omethane	74-97-5		<0.003 mg/kg		<0.003 mg/kg	<0.000003 %		<lod< td=""></lod<>
51		1,1,1-trichloroethar	200-663-8 ne; methyl chlorofori			<0.003 mg/kg		<0.003 mg/kg	<0.000003 %	H	<lod< td=""></lod<>
52		1,1-dichloropropen		71-55-6		<0.003 mg/kg		<0.003 mg/kg	<0.000003 %		<lod< td=""></lod<>
53		1,2-dichloropropan	209-253-3 e; propylene dichlor			<0.006 mg/kg		<0.006 mg/kg	<0.000006 %		<lod< td=""></lod<>
54		dibromomethane	201-152-2	78-87-5	$\left \right $	<0.003 mg/kg		<0.003 mg/kg		\parallel	<lod< td=""></lod<>
55	0	bromodichlorometh		74-95-3	$\left \right $	<0.003 mg/kg		<0.003 mg/kg			<lod< td=""></lod<>
		1,3-dichloropropen	200-856-7 e; [1] (Z)-1,3-dichlor							\parallel	
56			233-195-8 [2]	542-75-6 [1] 10061-01-5 [2]		<0.004 mg/kg		<0.004 mg/kg	<0.0000004 %	Ц	<lod< td=""></lod<>
57	8		431-460-4	10061-02-6		<0.003 mg/kg		<0.003 mg/kg	<0.000003 %	\square	<lod< td=""></lod<>
58		1,1,2-trichloroethar 602-014-00-8	ne 201-166-9	79-00-5		<0.003 mg/kg		<0.003 mg/kg	<0.000003 %		<lod< td=""></lod<>
59	8	1,3-dichloropropan	e 205-531-3	142-28-9		<0.003 mg/kg		<0.003 mg/kg	<0.000003 %		<lod< td=""></lod<>
60	0	dibromochlorometh	nane 204-704-0	124-48-1		<0.003 mg/kg		<0.003 mg/kg	<0.000003 %		<lod< td=""></lod<>
61		1,2-dibromoethane 602-010-00-6	203-444-5	106-93-4		<0.003 mg/kg		<0.003 mg/kg	<0.000003 %		<lod< td=""></lod<>
62		chlorobenzene 602-033-00-1	203-628-5	108-90-7		<0.003 mg/kg		<0.003 mg/kg	<0.000003 %		<lod< td=""></lod<>
63	8	1,1,1,2-tetrachloroe	ethane 211-135-1	630-20-6		<0.003 mg/kg		<0.003 mg/kg	<0.000003 %		<lod< td=""></lod<>
64		bromoform; tribrom 602-007-00-X	200-854-6	75-25-2		<0.003 mg/kg		<0.003 mg/kg	<0.000003 %		<lod< td=""></lod<>
65		1,1,2,2-tetrachloroe		79-34-5		<0.003 mg/kg		<0.003 mg/kg	<0.000003 %		<lod< td=""></lod<>
66		bromobenzene	203-623-8	108-86-1		<0.002 mg/kg		<0.002 mg/kg	<0.000002 %		<lod< td=""></lod<>
67		1,2,3-trichloropropa		96-18-4		<0.004 mg/kg		<0.004 mg/kg	<0.0000004 %	Ħ	<lod< td=""></lod<>
68		mesitylene; 1,3,5-tr				<0.003 mg/kg		<0.003 mg/kg	<0.000003 %	Ħ	<lod< td=""></lod<>
69	0	tert-butylbenzene		108-67-8	╞	<0.005 mg/kg		<0.005 mg/kg	<0.0000005 %	H	<lod< td=""></lod<>
70		1,2,4-trimethylbenz		98-06-6	$\left \right $	<0.006 mg/kg		<0.006 mg/kg	<0.000006 %		<lod< td=""></lod<>
71	8	sec-butylbenzene	202-436-9	95-63-6		<0.004 mg/kg		<0.004 mg/kg	<0.0000004 %	\parallel	<lod< td=""></lod<>
72	0	4-isopropyltoluene	205-227-0	135-98-8	$\left \right $	<0.004 mg/kg		<0.004 mg/kg			<lod< td=""></lod<>
72		1,3-dichlorbenzene	202-796-7	99-87-6	-					H	<lod< td=""></lod<>
13		602-067-00-7	208-792-1	541-73-1		<0.004 mg/kg		<0.004 mg/kg	<0.0000004 %		<lud< td=""></lud<>

#			Determinand		CLP Note	User entered	d data	Conv. Factor	Compound	conc.	Classification value	Applied	Conc. Not Used
		EU CLP index number	EC Number	CAS Number	CLP			Factor			value	MC /	Useu
74		-	e; p-dichlorobenze 203-400-5	ne 106-46-7		<0.004	mg/kg		<0.004	mg/kg	<0.0000004 %		<lod< td=""></lod<>
75	8	n-butylbenzene	203-209-7	104-51-8		<0.004	mg/kg		<0.004	mg/kg	<0.0000004 %		<lod< td=""></lod<>
76		-	ne; o-dichlorobenze 202-425-9	ne 95-50-1		<0.004	mg/kg		<0.004	mg/kg	<0.0000004 %		<lod< td=""></lod<>
77		1,2-dibromo-3-chlo 602-021-00-6	ropropane 202-479-3	96-12-8		<0.004	mg/kg		<0.004	mg/kg	<0.0000004 %		<lod< td=""></lod<>
78		1,2,4-trichlorobenz 602-087-00-6	ene 204-428-0	120-82-1		<0.007	mg/kg		<0.007	mg/kg	<0.000007 %		<lod< td=""></lod<>
79	0	hexachlorobutadier	ne 201-765-5	87-68-3		<0.004	mg/kg		<0.004	mg/kg	<0.0000004 %		<lod< td=""></lod<>
80	8	1,2,3-trichlorobenz	ene 201-757-1	87-61-6		<0.007	mg/kg		<0.007	mg/kg	<0.000007 %		<lod< td=""></lod<>
81		styrene 601-026-00-0	202-851-5	100-42-5		<0.003	mg/kg		<0.003	mg/kg	<0.000003 %		<lod< td=""></lod<>
82		2-chlorophenol; [1] chlorophenol [4] 604-008-00-0	4-chlorophenol; [2] 202-433-2 [1] 203-402-6 [2]	3-chlorophenol; [3] 95-57-8 [1] 106-48-9 [2]		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
			203-582-6 [3] 246-691-4 [4]	108-43-0 [3] 25167-80-0 [4]									
83	۲		201-857-5	88-75-5		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
84		2,4-dichlorophenol 604-011-00-7	204-429-6	120-83-2		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
85		[4] 2,6-xylenol; [5] x	Xylenol; [6] 2,4(or 2, 202-439-5 [1] 202-461-5 [2] 203-321-6 [3] 208-395-3 [4] 209-400-1 [5] 215-089-3 [6] 276-245-4 [7]	enol; [3] 2,3-xylenol; 5)-xylenol [7] 95-65-8 [1] 95-87-4 [2] 105-67-9 [3] 526-75-0 [4] 576-26-1 [5] 1300-71-6 [6] 71975-58-1 [7]	ŀ	0.016	mg/kg		0.016	mg/kg	0.0000016 %		
86		2,4,5-trichlorophen 604-017-00-X	ol 202-467-8	95-95-4		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
87		2,4,6-trichlorophen 604-018-00-5	ol 201-795-9	88-06-2		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
88		chlorocresol; 4-chlo	pro-m-cresol; 4-chlc 200-431-6			<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
89		4-nitrophenol; p-nit 609-015-00-2	rophenol 202-811-7	100-02-7		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
90		pentachlorophenol 604-002-00-8	201-778-6	87-86-5		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
91	0	2-chloronaphthaler	ne 202-079-9	91-58-7		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
92	8	2-methyl naphthale	202-078-3	91-57-6		0.071	mg/kg		0.071	mg/kg	0.0000071 %		
93		DEHP	nthalate; di-(2-ethyll 204-211-0	hexyl) phthalate;		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
94		BBP; benzyl butyl p 607-430-00-3	ohthalate 201-622-7	85-68-7		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
95		dibutyl phthalate; D 607-318-00-4	DBP 201-557-4	84-74-2		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
96	0	di-n-octyl phthalate		117-84-0		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
97	8	diethyl phthalate	201-550-6	84-66-2		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
98	8	dimethyl phthalate	205-011-6	131-11-3		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>

Page 42 of 71

#			Determinand		CLP Note	User entered	data	Conv. Factor	Compound	conc.	Classification value	Applied	Conc. Not Used
		EU CLP index number	EC Number	CAS Number	CLP			laotor				MC	0000
~			[1] dinitrotoluene [2			0.04	0		0.04		0.000004.0/		
99		609-007-00-9	204-450-0 [1] 246-836-1 [2]	121-14-2 [1] 25321-14-6 [2]		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
100		2,6-dinitrotoluene				<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
	0	609-049-00-8 4-bromophenylphe	210-106-0 envlether	606-20-2								-	
101	Ĩ		202-952-4	101-55-3	_	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
102		4-chloroaniline				<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
		612-137-00-9	203-401-0	106-47-8	_							-	
103	Θ	4-chlorophenylphe				<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
			230-281-7	7005-72-3								-	
104		azobenzene				<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
		611-001-00-6	203-102-5	103-33-3	_							_	
105	Θ	bis(2-chloroethoxy	,	444.04.4		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
		bis(2-chloroethyl)	203-920-2	111-91-1	+								
106		603-029-00-2	203-870-1	111-44-4		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
107	0	carbazole	201-696-0	86-74-8		0.218	mg/kg		0.218	mg/kg	0.0000218 %		
400	0	dibenzofuran	201 000 0	00740	+	0.000			0.000				
108			205-071-3	132-64-9		0.089	mg/kg		0.089	mg/kg	0.0000089 %		
109		hexachlorocyclope	entadiene			<0.01	malka		-0.01	malka	-0.000001.8/		<lod< td=""></lod<>
109		602-078-00-7	201-029-3	77-47-4		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
110	8	hexachloroethane		·		<0.01	mg/kg		<0.01	ma/ka	<0.000001 %		<lod< td=""></lod<>
			200-666-4	67-72-1									
111			ohex-2-enone; isop			<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
		606-012-00-8	201-126-0	78-59-1	_							_	
112		nitrosodipropylami		001017	_	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
		612-098-00-8	210-698-0	621-64-7	-								
113		nitrobenzene 609-003-00-7	202-716-0	98-95-3	_	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
		1,2-dichloroethyler	ne; [1] cis-dichloroe										
114		trans-dichloroethyl 602-026-00-3	208-750-2 [1]	540-59-0 [1]	_	<0.006	mg/kg		<0.006	ma/ka	<0.0000006 %		<lod< td=""></lod<>
		002-020-00-3	205-859-7 [2]	156-59-2 [2]			5.5			5.5			
			205-860-2 [3]	156-60-5 [3]									
		cumene; [1] propyl											
115		601-024-00-X	202-704-5 [1] 203-132-9 [2]	98-82-8 [1] 103-65-1 [2]		<0.007	mg/kg		<0.007	mg/kg	<0.000007 %		<lod< td=""></lod<>
		2-chlorotoluene; [1 [3] chlorotoluene [4		2] 4-chlorotoluene;									
116		602-040-00-X	202-424-3 [1]	95-49-8 [1]	-	<0.006	mg/kg		<0.006	ma/ka	<0.0000006 %		<lod< td=""></lod<>
110			203-580-5 [2]	108-41-8 [2]		<0.000	шу/ку		<0.000	iiig/kg	<0.0000000 /8		LOD
			203-397-0 [3]	106-43-4 [3]									
		m crocol: [1] o cro	246-698-2 [4] sol; [2] p-cresol; [3]	25168-05-2 [4]	+					_		-	
		604-004-00-9	203-577-9 [1]	108-39-4 [1]	_								
117		604-004-00-9	202-423-8 [2]	95-48-7 [2]		<0.02	mg/kg		<0.02	mg/kg	<0.000002 %		<lod< td=""></lod<>
			203-398-6 [3]	106-44-5 [3]									
			215-293-2 [4]	1319-77-3 [4]									
			n-nitroaniline; [2] p-										
118		612-012-00-9	201-855-4 [1] 202-729-1 [2]	88-74-4 [1] 99-09-2 [2] 100-01-6 [3]	2	<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
I			202-810-1 [3]										

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
Θ	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
ND	Not detected
CLP: Note 1	Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because No free phase contamination detected

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.0127%)

Classification of sample: WS14-16/03/2022-0.20m

Sample details

Sample name: WS14-16/03/2022-0.20m LoW Code: Chapter:

Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites) 17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 0% No Moisture Correction applied (MC)

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1		arsenic { arsenic tr 033-003-00-0	i <mark>oxide</mark> } 215-481-4	1327-53-3		6.4	mg/kg	1.32	8.45	mg/kg	0.000845 %		
2	4	cadmium { cadmiu 048-002-00-0	1	1306-19-0		<0.1	mg/kg	1.142	<0.114	mg/kg	<0.0000114 %		<lod< td=""></lod<>
3	4		nium(III) compounds		-	108.7	mg/kg	1.462	158.871	mg/kg	0.0159 %		
4	4	compounds, with the	hium(VI) compounds the exception of bariu cified elsewhere in t	um chromate and		<0.3	mg/kg	2.27	<0.681	mg/kg	<0.0000681 %		<lod< td=""></lod<>
5	4		l <mark>oxide; copper (I) oxic</mark> 215-270-7	<mark>de</mark> } 1317-39-1		12	mg/kg	1.126	13.511	mg/kg	0.00135 %		
6	4	lead { lead chroma 082-004-00-2		7758-97-6	1	20	mg/kg	1.56	31.196	mg/kg	0.002 %		
7	4	mercury { mercury 080-010-00-X		7487-94-7	-	<0.1	mg/kg	1.353	<0.135	mg/kg	<0.0000135 %		<lod< td=""></lod<>
8	4			14721-18-7		19.7	mg/kg	2.976	58.632	mg/kg	0.00586 %		
9	4	selenium { nickel s 028-031-00-5		15060-62-5		1	mg/kg	2.554	2.554	mg/kg	0.000255 %		
10	4			13530-65-9		75	mg/kg	2.774	208.061	mg/kg	0.0208 %		
11		TPH (C6 to C40) p	etroleum group	ТРН		171	mg/kg		171	mg/kg	0.0171 %		
12		tert-butyl methyl et 2-methoxy-2-methy 603-181-00-X	, ,	1634-04-4		<0.002	mg/kg		<0.002	mg/kg	<0.000002 %		<lod< td=""></lod<>
13		benzene 601-020-00-8	200-753-7	71-43-2		<0.003	mg/kg		<0.003	mg/kg	<0.000003 %		<lod< td=""></lod<>
14		toluene 601-021-00-3	203-625-9	108-88-3		0.004	mg/kg		0.004	mg/kg	0.0000004 %		
15	9	ethylbenzene 601-023-00-4	202-849-4	100-41-4	-	0.005	mg/kg		0.005	mg/kg	0.0000005 %		
16		xylene 601-022-00-9	202-422-2 [1] 203-396-5 [2]	95-47-6 [1] 106-42-3 [2]		0.02	mg/kg		0.02	mg/kg	0.000002 %		

#			Determinand		CLP Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
		EU CLP index number	EC Number	CAS Number	CLP						Value	MC /	USEU
			203-576-3 [3] 215-535-7 [4]	108-38-3 [3] 1330-20-7 [4]									
17		рН		J		8.46	pН		8.46	pН	8.46 pH		
				PH						F			
18		naphthalene 601-052-00-2	202 040 5	01.00.0		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
-		acenaphthylene	202-049-5	91-20-3									
19			205-917-1	208-96-8		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
20	0	acenaphthene	201-469-6	83-32-9		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
21		fluorene				0.021	mg/kg		0.021	mg/kg	0.0000021 %		
21			201-695-5	86-73-7	1	0.021	iiig/kg		0.021	шу/ку	0.000021 /8		
22	0	phenanthrene	201-581-5	85-01-8		0.076	mg/kg		0.076	mg/kg	0.0000076 %		
23	0	anthracene				0.033	mg/kg		0.033	mg/kg	0.0000033 %		
		fluoranthene	204-371-1	120-12-7	+								
24			205-912-4	206-44-0		0.181	mg/kg		0.181	mg/kg	0.0000181 %		
25	٥	pyrene	204-927-3	129-00-0		0.187	mg/kg		0.187	mg/kg	0.0000187 %		
26		benzo[a]anthracen 601-033-00-9	e 200-280-6	56-55-3		0.119	mg/kg		0.119	mg/kg	0.0000119 %		
27		chrysene				0.1	mg/kg		0.1	mg/kg	0.00001 %		
		601-048-00-0	205-923-4	218-01-9									
28		benzo[b]fluoranthe 601-034-00-4	ne 205-911-9	205-99-2		0.126	mg/kg		0.126	mg/kg	0.0000126 %		
		benzo[k]fluoranthe		205-33-2									
29		601-036-00-5	205-916-6	207-08-9		0.049	mg/kg		0.049	mg/kg	0.0000049 %		
30		benzo[a]pyrene; be	enzo[def]chrysene			0.104	mg/kg		0.104	mg/kg	0.0000104 %		
			200-028-5	50-32-8	1_								
31	Θ	indeno[123-cd]pyre		400.00.5		0.07	mg/kg		0.07	mg/kg	0.000007 %		
		dibenz[a,h]anthrac	205-893-2	193-39-5	-								
32		601-041-00-2	200-181-8	53-70-3	-	0.025	mg/kg		0.025	mg/kg	0.0000025 %		
00	_	benzo[ghi]perylene				0.07			0.07		0.00007.0/		
33			205-883-8	191-24-2		0.07	mg/kg		0.07	mg/kg	0.000007 %		
34		phenol				<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
	1	604-001-00-2	203-632-7	108-95-2									
35	8	1,1-dichloroethane	203-458-1,	107-06-2, 75-34-3		<0.007	mg/kg		<0.007	mg/kg	<0.0000007 %		<lod< td=""></lod<>
36		tetrachloroethylene			╞	<0.003	mg/kg		<0.003	ma/ka	<0.000003 %		<lod< td=""></lod<>
Ľ		602-028-00-4	204-825-9	127-18-4]								
37		carbon tetrachlorid 602-008-00-5				<0.004	mg/kg		<0.004	mg/kg	<0.0000004 %		<lod< td=""></lod<>
-		trichloroethylene; t	200-262-8 richloroethene	56-23-5									
38		602-027-00-9	201-167-4	79-01-6	-	<0.003	mg/kg		<0.003	mg/kg	<0.000003 %		<lod< td=""></lod<>
39		vinyl chloride; chlo	roethylene			<0.002	mg/kg		<0.002	mg/kg	<0.0000002 %		<lod< td=""></lod<>
40		602-023-00-7 hexachlorobenzen	200-831-0 e	75-01-4		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
40		602-065-00-6	204-273-9	118-74-1	-	<0.01	mg/kg		<0.01		<0.000001 //		
41		dichlorodifluorome	thane 200-893-9	75-71-8		<0.002	mg/kg		<0.002	mg/kg	<0.0000002 %		<lod< td=""></lod<>
42		chloromethane; me 602-001-00-7	ethyl chloride 200-817-4	74-87-3		<0.003	mg/kg		<0.003	mg/kg	<0.000003 %		<lod< td=""></lod<>
43		bromomethane; m	ethylbromide			<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
<u> </u>		602-002-00-2	200-813-2	74-83-9									
44		chloroethane 602-009-00-0	200-830-5	75-00-3		<0.002	mg/kg		<0.002	mg/kg	<0.0000002 %		<lod< td=""></lod<>

#			Determinand		CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
		EU CLP index number	EC Number	CAS Number	CLP		1 actor		value	MC /	Useu
45	8	trichlorofluorometha	ane 200-892-3	75-69-4		<0.002 mg/kg		<0.002 mg/kg	<0.000002 %		<lod< td=""></lod<>
40			e; vinylidene chlorid			0.000 #		0.000 (
46		602-025-00-8	200-864-0	75-35-4		<0.006 mg/kg		<0.006 mg/kg	<0.000006 %		<lod< td=""></lod<>
47		dichloromethane; m	nethylene chloride			<0.007 mg/kg		<0.007 mg/kg	<0.000007 %		<lod< td=""></lod<>
	-			75-09-2							
48	•	2,2-dichloropropan	e 209-832-0	594-20-7		<0.004 mg/kg		<0.004 mg/kg	<0.0000004 %		<lod< td=""></lod<>
49	8	bromochlorometha	ne 200-826-3	74-97-5		<0.003 mg/kg		<0.003 mg/kg	<0.000003 %		<lod< td=""></lod<>
		chloroform; trichloro		14-31-3							
50		,	200-663-8	67-66-3	-	<0.003 mg/kg		<0.003 mg/kg	<0.000003 %		<lod< td=""></lod<>
FA			ne; methyl chlorofori	<u>.</u>		0.000		0.000	0.000000.00		1.00
51		602-013-00-2	200-756-3	71-55-6	-	<0.003 mg/kg		<0.003 mg/kg	<0.000003 %		<lod< td=""></lod<>
52		1,1-dichloropropen	e	~		<0.003 mg/kg		<0.003 mg/kg	<0.000003 %		<lod< td=""></lod<>
~		602-031-00-0	209-253-3	563-58-6				CO.000 Mig/Kg			
53			e; propylene dichlor			<0.006 mg/kg		<0.006 mg/kg	<0.0000006 %		<lod< td=""></lod<>
			201-152-2	78-87-5							
54		dibromomethane 602-003-00-8	200-824-2	74-95-3	-	<0.003 mg/kg		<0.003 mg/kg	<0.000003 %		<lod< td=""></lod<>
55	•	bromodichlorometh		75-27-4		<0.003 mg/kg		<0.003 mg/kg	<0.000003 %		<lod< td=""></lod<>
			e; [1] (Z)-1,3-dichlor								
56		602-030-00-5		542-75-6 [1] 10061-01-5 [2]		<0.004 mg/kg		<0.004 mg/kg	<0.0000004 %		<lod< td=""></lod<>
57	8	trans-1,3-dichlorop		10001-01-0[2]		<0.003 mg/kg		<0.003 mg/kg	<0.000003 %		<lod< td=""></lod<>
57			431-460-4	10061-02-6		<0.003 mg/kg		<0.003 mg/kg	<0.0000003 /8		LOD
58		1,1,2-trichloroethan		70.00 5		<0.003 mg/kg		<0.003 mg/kg	<0.000003 %		<lod< td=""></lod<>
		602-014-00-8 1,3-dichloropropan	201-166-9	79-00-5	-					-	
59	•		205-531-3	142-28-9		<0.003 mg/kg		<0.003 mg/kg	<0.000003 %		<lod< td=""></lod<>
60		dibromochlorometh				<0.003 mg/kg		<0.003 mg/kg	<0.000003 %		<lod< td=""></lod<>
00			204-704-0	124-48-1		<0.003 mg/kg		<0.003 mg/kg	<0.0000003 78		LOD
61		1,2-dibromoethane 602-010-00-6	203-444-5	106-93-4	_	<0.003 mg/kg		<0.003 mg/kg	<0.000003 %		<lod< td=""></lod<>
62		chlorobenzene				<0.003 mg/kg		<0.003 mg/kg	<0.000003 %		<lod< td=""></lod<>
02		602-033-00-1	203-628-5	108-90-7							LOD
63	•	1,1,1,2-tetrachloroe				<0.003 mg/kg		<0.003 mg/kg	<0.000003 %		<lod< td=""></lod<>
		bromoform; tribrom	211-135-1 omethane	630-20-6	┢	0.000		0.000	0.0000000.00		
64		,	200-854-6	75-25-2		<0.003 mg/kg		<0.003 mg/kg	<0.000003 %		<lod< td=""></lod<>
65		1,1,2,2-tetrachloroe	201-197-8	79-34-5		<0.003 mg/kg		<0.003 mg/kg	<0.000003 %		<lod< td=""></lod<>
66		bromobenzene			╞	<0.002 mg/kg		<0.002 mg/kg	<0.000002 %		<lod< td=""></lod<>
			203-623-8	108-86-1	-					H	
67		1,2,3-trichloropropa				<0.004 mg/kg		<0.004 mg/kg	<0.0000004 %		<lod< td=""></lod<>
68		602-062-00-X mesitylene; 1,3,5-tr		96-18-4		0.004 malla		0.004 mallia	0.000004.9/		
00		601-025-00-5	203-604-4	108-67-8		0.004 mg/kg		0.004 mg/kg	0.0000004 %		
69	•	tert-butylbenzene	202-632-4	98-06-6		<0.005 mg/kg		<0.005 mg/kg	<0.0000005 %		<lod< td=""></lod<>
70		1,2,4-trimethylbenz	ene		ļ	0.014 mg/kg		0.014 mg/kg	0.0000014 %		
			202-436-9	95-63-6	-						
71	8	sec-butylbenzene	005 227 0	125 09 9	-	0.005 mg/kg		0.005 mg/kg	0.0000005 %		
72	8	4-isopropyltoluene	205-227-0	135-98-8	$\left \right $	<0.004 mg/kg		<0.004 mg/kg	<0.000004 %		<lod< td=""></lod<>
			202-796-7	99-87-6							
73		1,3-dichlorbenzene 602-067-00-7	208-792-1	541-73-1		<0.004 mg/kg		<0.004 mg/kg	<0.0000004 %		<lod< td=""></lod<>

#			Determinand		CLP Note	User entered	d data	Conv.	Compound	conc.	Classification	Applied	Conc. Not
		EU CLP index number	EC Number	CAS Number	CLP			Factor			value	MC A	Used
74		1,4-dichlorobenzen 602-035-00-2	e; p-dichlorobenze 203-400-5	ne 106-46-7		0.092	mg/kg		0.092	mg/kg	0.0000092 %		
75	0	n-butylbenzene	203-209-7	104-51-8		0.011	mg/kg		0.011	mg/kg	0.0000011 %		
76		1,2-dichlorobenzen 602-034-00-7	e; o-dichlorobenze 202-425-9	95-50-1		<0.004	mg/kg		<0.004	mg/kg	<0.0000004 %		<lod< td=""></lod<>
77		1,2-dibromo-3-chlo 602-021-00-6	ropropane 202-479-3	96-12-8		<0.004	mg/kg		<0.004	mg/kg	<0.0000004 %		<lod< td=""></lod<>
78		1,2,4-trichlorobenz	ene 204-428-0	120-82-1		<0.007	mg/kg		<0.007	mg/kg	<0.000007 %		<lod< td=""></lod<>
79	•	hexachlorobutadier	ne 201-765-5	87-68-3		<0.004	mg/kg		<0.004	mg/kg	<0.0000004 %		<lod< td=""></lod<>
80	8	1,2,3-trichlorobenz	ene 201-757-1	87-61-6		<0.007	mg/kg		<0.007	mg/kg	<0.000007 %		<lod< td=""></lod<>
81		styrene 601-026-00-0	202-851-5	100-42-5		<0.003	mg/kg		<0.003	mg/kg	<0.000003 %		<lod< td=""></lod<>
82		chlorophenol [4]	4-chlorophenol; [2] 202-433-2 [1] 203-402-6 [2]	3-chlorophenol; [3] 95-57-8 [1] 106-48-9 [2]		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
			203-582-6 [3] 246-691-4 [4]	108-43-0 [3] 25167-80-0 [4]									
83			201-857-5	88-75-5		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
84		2,4-dichlorophenol 604-011-00-7	204-429-6	120-83-2		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
85		[4] 2,6-xylenol; [5]) 604-006-00-X		enol; [3] 2,3-xylenol; 5)-xylenol [7] 95-65-8 [1] 95-87-4 [2] 105-67-9 [3] 526-75-0 [4] 576-26-1 [5] 1300-71-6 [6] 71975-58-1 [7]	-	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
86	L	2,4,5-trichlorophen 604-017-00-X	ol 202-467-8	95-95-4		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
87		2,4,6-trichlorophen 604-018-00-5	ol 201-795-9	88-06-2		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
88		chlorocresol; 4-chlo				<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
89		4-nitrophenol; p-nit 609-015-00-2	rophenol 202-811-7	100-02-7		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
90		pentachlorophenol 604-002-00-8	201-778-6	87-86-5		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
91	0	2-chloronaphthaler	ne 202-079-9	91-58-7		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
92	0	2-methyl naphthale	ne 202-078-3	91-57-6		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
93		bis(2-ethylhexyl) ph DEHP 607-317-00-9	nthalate; di-(2-ethyll 204-211-0	hexyl) phthalate;		0.561	mg/kg		0.561	mg/kg	0.0000561 %		
94		BBP; benzyl butyl p 607-430-00-3	ohthalate 201-622-7	85-68-7		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
95		dibutyl phthalate; D 607-318-00-4	BP 201-557-4	84-74-2		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
96	8	di-n-octyl phthalate	204-214-7	117-84-0		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
97		diethyl phthalate	201-550-6	84-66-2		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
98	8	dimethyl phthalate	205-011-6	131-11-3		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>

Page 48 of 71

#			Determinand		CLP Note	User entered	data	Conv. Factor	Compound c	onc.	Classification value	MC Applied	Conc. Not Used
		EU CLP index number	EC Number	CAS Number	CLP			Factor			value	MC /	Useu
		2,4-dinitrotoluene;	[1] dinitrotoluene [2]]									
99			204-450-0 [1] 246-836-1 [2]	121-14-2 [1] 25321-14-6 [2]		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
100		2,6-dinitrotoluene	210-106-0	606-20-2		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
101	•	4-bromophenylphe	1	000-20-2	T	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %	E	<lod< td=""></lod<>
			202-952-4	101-55-3									
102		4-chloroaniline				<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
			203-401-0	106-47-8	-							_	
103	8	4-chlorophenylphe			_	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
			230-281-7	7005-72-3	-							-	
104		azobenzene	boo 400 5	400.00.0	_	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
	_		203-102-5	103-33-3								-	
105		bis(2-chloroethoxy)	203-920-2	111-91-1		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
		bis(2-chloroethyl) e		111-91-1									
106			203-870-1	111-44-4		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
		carbazole											
107			201-696-0	86-74-8		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
400		dibenzofuran	1			0.011			0.014		0.0000011.0/		
108			205-071-3	132-64-9		0.011	mg/kg		0.011	mg/kg	0.0000011 %		
109		hexachlorocyclope	ntadiene			-0.01	malka		-0.01	malka	-0.000001.9/		
109		602-078-00-7	201-029-3	77-47-4		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
110		hexachloroethane				<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
110			200-666-4	67-72-1		<0.01	шу/ку		<0.01	шу/ку	<0.000001 /8		LOD
111		3,5,5-trimethylcyclo	ohex-2-enone; isoph	norone		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
		606-012-00-8	201-126-0	78-59-1		<0.01	iiig/kg		<0.01	ing/itg	<0.000001 /0		LOD
112		nitrosodipropylamir	ne			<0.01	mg/kg		<0.01	ma/ka	<0.000001 %		<lod< td=""></lod<>
		612-098-00-8	210-698-0	621-64-7									
113		nitrobenzene				<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
			202-716-0	98-95-3								_	
		1,2-dichloroethylen trans-dichloroethyle	e; [1] cis-dichloroet ene [3]	hylene; [2]									
114			208-750-2 [1] 205-859-7 [2] 205-860-2 [3]	540-59-0 [1] 156-59-2 [2] 156-60-5 [3]	_	<0.006	mg/kg		<0.006	mg/kg	<0.0000006 %		<lod< td=""></lod<>
		cumene; [1] propyll	benzene [2]										
115			202-704-5 [1] 203-132-9 [2]	98-82-8 [1] 103-65-1 [2]		<0.007	mg/kg		<0.007	mg/kg	<0.000007 %		<lod< td=""></lod<>
] 3-chlorotoluene; [2										
116			202-424-3 [1] 203-580-5 [2] 203-397-0 [3] 246-698-2 [4]	95-49-8 [1] 108-41-8 [2] 106-43-4 [3] 25168-05-2 [4]		<0.006	mg/kg		<0.006	mg/kg	<0.0000006 %		<lod< td=""></lod<>
		m-cresol; [1] o-cres	sol; [2] p-cresol; [3]										
117			203-577-9 [1] 202-423-8 [2] 203-398-6 [3] 215-293-2 [4]	108-39-4 [1] 95-48-7 [2] 106-44-5 [3] 1319-77-3 [4]		<0.02	mg/kg		<0.02	mg/kg	<0.000002 %		<lod< td=""></lod<>
\vdash			n-nitroaniline; [2] p-r	1	-								
118		612-012-00-9	201-855-4 [1] 202-729-1 [2] 202-810-1 [3]	88-74-4 [1] 99-09-2 [2] 100-01-6 [3]	2	<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
								Ll		Total:	0.0645 %		

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
۲	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
ND	Not detected
CLP: Note 1	Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because No free phase contamination detected

Hazard Statements hit:

Flam. Liq. 2; H225 "Highly flammable liquid and vapour."

Because of determinands: toluene: (conc.: 4.0e-07%)

ethylbenzene: (conc.: 5.0e-07%)

Flam. Lig. 3; H226 "Flammable liquid and vapour."

Because of determinands:

TPH (C6 to C40) petroleum group: (conc.: 0.0171%) xylene: (conc.: 2.0e-06%) mesitylene; 1,3,5-trimethylbenzene: (conc.: 4.0e-07%) 1,2,4-trimethylbenzene: (conc.: 1.4e-06%) sec-butylbenzene: (conc.: 5.0e-07%) n-butylbenzene: (conc.: 1.1e-06%)

Classification of sample: WS15-16/03/2022-0.60m

Sample details

Sample name: WS15-16/03/2022-0.60m LoW Code: Chapter:

Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites) 17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 0% No Moisture Correction applied (MC)

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1				4007.50.0		8.9	mg/kg	1.32	11.751	mg/kg	0.00118 %		
-	-	033-003-00-0 cadmium {	215-481-4	1327-53-3	$\left \right $							-	
2	4		215-146-2	1306-19-0	-	0.3	mg/kg	1.142	0.343	mg/kg	0.0000343 %		
3	4	<mark>oxide (worst case)</mark>	hium(III) compounds } 215-160-9	{ • chromium(III)	_	54.9	mg/kg	1.462	80.239	mg/kg	0.00802 %		
4	~	chromium in chrom compounds, with th of compounds spe	nium(VI) compounds ne exception of bari cified elsewhere in t	{ chromium (VI) um chromate and		<0.3	mg/kg	2.27	<0.681	mg/kg	<0.0000681 %		<lod< th=""></lod<>
-	-	024-017-00-8	oxide; copper (I) oxi									-	
5	4		215-270-7	1317-39-1	-	54	mg/kg	1.126	60.798	mg/kg	0.00608 %		
6	4	lead { <mark>lead chroma</mark>	1)	1	355	mg/kg	1.56	553.734	mg/kg	0.0355 %		
			231-846-0	7758-97-6									
7	4	mercury { mercury 080-010-00-X	dichloride } 231-299-8	7487-94-7	-	0.2	mg/kg	1.353	0.271	mg/kg	0.0000271 %		
8	2	nickel { nickel chro				16.6	ma/ka	2.976	49.406	mg/kg	0.00494 %		
		028-035-00-7	238-766-5	14721-18-7		10.0	iiig/kg	2.970	43.400	iiig/kg	0.00494 /8		
9				45000 00 5		<1	mg/kg	2.554	<2.554	mg/kg	<0.000255 %		<lod< th=""></lod<>
		028-031-00-5 zinc { <mark>zinc chromat</mark>	239-125-2	15060-62-5	-							-	
10	~	024-007-00-3	236-878-9	13530-65-9		154	mg/kg	2.774	427.219	mg/kg	0.0427 %		
11		рН		PH		8.09	pН		8.09	pН	8.09 pH		
		naphthalene		FN	+								
12		601-052-00-2	202-049-5	91-20-3	-	<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< th=""></lod<>
13	8	acenaphthylene				<0.03	mg/kg		<0.03	ma/ka	<0.000003 %		<lod< th=""></lod<>
L			205-917-1	208-96-8									
14	8	acenaphthene	201-469-6	83-32-9		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
15		fluorene	201-695-5	86-73-7		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< th=""></lod<>
10		phenanthrene	201-030-0	00-13-1	\vdash	0.11	m a //		0.11		0.000011.0/		
16			201-581-5	85-01-8		0.11	mg/kg		0.11	mg/kg	0.000011 %		
17	8	anthracene	204-371-1	120-12-7		0.04	mg/kg		0.04	mg/kg	0.000004 %		

www.hazwasteonline.com

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered dat	a	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
18	8	fluoranthene	205-912-4	206-44-0		0.24 mg	/kg		0.24	mg/kg	0.000024 %		
19	۲	pyrene	204-927-3	129-00-0		0.21 mg	/kg		0.21	mg/kg	0.000021 %		
20		benzo[a]anthracen 601-033-00-9	e 200-280-6	56-55-3		0.13 mg	/kg		0.13	mg/kg	0.000013 %		
21		chrysene 601-048-00-0	205-923-4	218-01-9		0.15 mg	/kg		0.15	mg/kg	0.000015 %		
22		benzo[b]fluoranthe 601-034-00-4	ne 205-911-9	205-99-2		0.17 mg	/kg		0.17	mg/kg	0.000017 %		
23		benzo[k]fluoranthe 601-036-00-5	ne 205-916-6	207-08-9		0.07 mg	/kg		0.07	mg/kg	0.000007 %		
24		benzo[a]pyrene; be 601-032-00-3	enzo[def]chrysene 200-028-5	50-32-8		0.13 mg	/kg		0.13	mg/kg	0.000013 %		
25	8	indeno[123-cd]pyre		193-39-5		0.1 mg	/kg		0.1	mg/kg	0.00001 %		
26		dibenz[a,h]anthrac		53-70-3		<0.04 mg	/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
27	۲	benzo[ghi]perylene		191-24-2		0.1 mg	/kg		0.1	mg/kg	0.00001 %		
		[Total:	0.099 %		

Key

ixey	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
	Determinand defined or amended by HazWasteOnline (see Appendix A)
æ <mark>\$</mark>	Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Classification of sample: WS16-16/03/2022-0.25m

Sample details

Sample name: WS16-16/03/2022-0.25m LoW Code: Chapter:

Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites) 17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 0% No Moisture Correction applied (MC)

#		Determinand EU CLP index number EC Number CAS Number			CLP Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
			 		Ĕ							~	
1	4	arsenic { arsenic tr 033-003-00-0	10xide } 215-481-4	1327-53-3		5.9	mg/kg	1.32	7.79	mg/kg	0.000779 %		
	æ	cadmium { cadmiu	1	1327-33-3									
2		048-002-00-0	215-146-2	1306-19-0		0.1	mg/kg	1.142	0.114	mg/kg	0.0000114 %		
3	4	chromium in chrom oxide (worst case)	hium(III) compounds } 215-160-9	• { • chromium(III) 1308-38-9	_	69.2	mg/kg	1.462	101.14	mg/kg	0.0101 %		
4	4	compounds, with the	nium(VI) compounds ne exception of bari cified elsewhere in t	s { chromium (VI) um chromate and		<0.3	mg/kg	2.27	<0.681	mg/kg	<0.0000681 %		<lod< th=""></lod<>
		024-017-00-8		,									
5	2	copper { dicopper of	oxide; copper (I) oxi	de }		34	ma/ka	1.126	38.28	mg/kg	0.00383 %		
5		029-002-00-X	215-270-7	1317-39-1			шу/ку	1.120	30.20	шу/ку	0.00303 78		
6	4	lead { <mark>lead chroma</mark>	,		1	23	mg/kg	1.56	35.876	mg/kg	0.0023 %		
		082-004-00-2	231-846-0	7758-97-6									
7	4	mercury { mercury 080-010-00-X	dichloride } 231-299-8	7487-94-7		0.1	mg/kg	1.353	0.135	mg/kg	0.0000135 %		
	æ	nickel { nickel chro	1			04.0		0.070	74.400		0.00744.0/		
8		028-035-00-7	238-766-5	14721-18-7		24.9	mg/кg	2.976	74.109	mg/kg	0.00741 %		
9	4	selenium {	elenate }			<1	ma/ka	2.554	<2.554	mg/kg	<0.000255 %		<lod< th=""></lod<>
_		028-031-00-5	239-125-2	15060-62-5									
10	4	zinc { zinc chromat		40500 05 0		108	mg/kg	2.774	299.608	mg/kg	0.03 %		
		024-007-00-3	236-878-9	13530-65-9								-	
11	•	рН		PH		7.98	рН		7.98	pН	7.98 pH		
12		naphthalene	1	<u> </u>		0.4			0.4		0 00001 %		1.00
12		601-052-00-2	202-049-5	91-20-3		<0.4	mg/kg		<0.4	mg/kg	<0.00004 %		<lod< td=""></lod<>
13		acenaphthylene				<0.3	mg/kg		<0.3	mg/kg	<0.00003 %		<lod< th=""></lod<>
Ľ			205-917-1	208-96-8		.0.0							
14	•	acenaphthene				<0.5	mg/kg		<0.5	mg/kg	<0.00005 %		<lod< th=""></lod<>
		fluoropo	201-469-6	83-32-9									
15	0	fluorene	201-695-5	86-73-7		<0.4	mg/kg		<0.4	mg/kg	<0.00004 %		<lod< th=""></lod<>
16		phenanthrene				0.06	ma/ka		0.96	mc/kc	0.000096 %		
10			201-581-5	85-01-8		0.96	mg/kg		0.90	mg/kg	0.000096 %		
17	0	anthracene		100.00 =		0.66	mg/kg		0.66	mg/kg	0.000066 %		
			204-371-1	120-12-7									

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
18	8	fluoranthene	205-912-4	206-44-0		3.68 mg/kg	9	3.68 mg/kg	0.000368 %		
19	0	pyrene	204-927-3	129-00-0		3.86 mg/kg	9	3.86 mg/kg	0.000386 %		
20		benzo[a]anthracen 601-033-00-9	e 200-280-6	56-55-3		2.14 mg/kg	9	2.14 mg/kg	0.000214 %		
21		chrysene 601-048-00-0	205-923-4	218-01-9		2.07 mg/kg	9	2.07 mg/kg	0.000207 %		
22		benzo[b]fluoranthe 601-034-00-4	ne 205-911-9	205-99-2		4.02 mg/kg	9	4.02 mg/kg	0.000402 %		
23		benzo[k]fluoranthe 601-036-00-5	ne 205-916-6	207-08-9		1.57 mg/kg	9	1.57 mg/kg	0.000157 %		
24		benzo[a]pyrene; be 601-032-00-3	enzo[def]chrysene 200-028-5	50-32-8		3.25 mg/kg	9	3.25 mg/kg	0.000325 %		
25	8	indeno[123-cd]pyre	ene 205-893-2	193-39-5		2.46 mg/kg	9	2.46 mg/kg	0.000246 %		
26		dibenz[a,h]anthrac		53-70-3		0.49 mg/kg	3	0.49 mg/kg	0.000049 %		
27	0	benzo[ghi]perylene		191-24-2		2.24 mg/kg	3	2.24 mg/kg	0.000224 %		
	I	1						Total:	0.0576 %	\uparrow	I

Key

itey	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
0	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Classification of sample: WS17-16/03/2022-0.30m

Sample details

Sample name: WS17-16/03/2022-0.30m LoW Code: Chapter:

Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites) 17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 0% No Moisture Correction applied (MC)

#		EU CLP index EC Number CAS Number			CLP Note	User entered	data	Conv. Factor	Compound of	conc.	Classification value	MC Applied	Conc. Not Used
		EU CLP index number	EC Number	CAS Number	CLP			1 actor			Value	MC	USEU
1		arsenic { arsenic tr				0.8	mg/kg	1.32	1.056	mg/kg	0.000106 %		
		033-003-00-0	215-481-4	1327-53-3									
2	~	cadmium { cadmiu 048-002-00-0	m oxide } 215-146-2	1306-19-0	-	<0.1	mg/kg	1.142	<0.114	mg/kg	<0.0000114 %		<lod< td=""></lod<>
3	4		nium(III) compounds		-	130.7	mg/kg	1.462	191.025	mg/kg	0.0191 %		
4	*	compounds, with the of compounds spe	nium(VI) compounds he exception of bari cified elsewhere in t	s { chromium (VI) um chromate and		<0.3	mg/kg	2.27	<0.681	mg/kg	<0.0000681 %		<lod< th=""></lod<>
		024-017-00-8										-	
5	4	029-002-00-X	oxide; copper (I) oxi 215-270-7	<mark>be</mark> } 1317-39-1		45	mg/kg	1.126	50.665	mg/kg	0.00507 %		
6		lead { lead chroma			1	<5	mg/kg	1.56	<7.799	mg/kg	<0.0005 %		<lod< td=""></lod<>
Ľ		082-004-00-2	231-846-0	7758-97-6									
7		mercury { mercury 080-010-00-X	dichloride } 231-299-8	7487-94-7		0.1	mg/kg	1.353	0.135	mg/kg	0.0000135 %		
		nickel { nickel chro		1401-34-1		04.0		0.070	00.050		0.00000.0/		
8	-	028-035-00-7	238-766-5	14721-18-7		31.2	тд/кд	2.976	92.859	mg/kg	0.00929 %		
9	-		,	^ 		1	ma/ka	2.554	2.554	mg/kg	0.000255 %		
_		028-031-00-5	239-125-2	15060-62-5						5.5			
10		zinc { zinc chromat				59	mg/kg	2.774	163.675	mg/kg	0.0164 %		
		024-007-00-3	236-878-9	13530-65-9	-								
11	8	рН	1	PH		9.23	pН		9.23	pН	9.23 pH		
		naphthalene		<u>[</u>		0.04			0.04	0	0.000004.0/		1.05
12		601-052-00-2	202-049-5	91-20-3		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
13	0	acenaphthylene				<0.03	mg/kg		<0.03	ma/ka	<0.000003 %		<lod< th=""></lod<>
			205-917-1	208-96-8									
14		acenaphthene	201-469-6	83-32-9		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
	0	fluorene	201-409-0	03-32-9							0.00000.1.0/		
15			201-695-5	86-73-7		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
16		phenanthrene				<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< th=""></lod<>
			201-581-5	85-01-8	-								
17	8	anthracene	204-371-1	120-12-7		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< th=""></lod<>

#		EU CLP index	Determinand EC Number	CAS Number	CLP Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
18	0	fluoranthene	205-912-4	206-44-0		<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< th=""></lod<>
19		pyrene	204-927-3	129-00-0		<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
20		benzo[a]anthracen 601-033-00-9	e 200-280-6	56-55-3		<0.06	mg/kg		<0.06	mg/kg	<0.000006 %		<lod< td=""></lod<>
21		chrysene 601-048-00-0	205-923-4	218-01-9		<0.02	mg/kg		<0.02	mg/kg	<0.000002 %		<lod< td=""></lod<>
22		benzo[b]fluoranthe 601-034-00-4	ne 205-911-9	205-99-2		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
23		benzo[k]fluoranthe 601-036-00-5	ne 205-916-6	207-08-9		<0.02	mg/kg		<0.02	mg/kg	<0.000002 %		<lod< td=""></lod<>
24		benzo[a]pyrene; be 601-032-00-3	enzo[def]chrysene 200-028-5	50-32-8		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %	1	<lod< td=""></lod<>
25	8	indeno[123-cd]pyre		193-39-5		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
26		dibenz[a,h]anthrac		53-70-3		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
27	0	benzo[ghi]perylene		191-24-2		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
		1		1	1					Total:	0.0508 %	T	L

Key

	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Classification of sample: WS18-17/03/2022-0.60m

Sample details

Sample name: WS18-17/03/2022-0.60m LoW Code: Chapter:

Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites) 17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 0% No Moisture Correction applied (MC)

2	cadmium { <mark>cadmiun</mark> 048-002-00-0 chromium in chrom	215-481-4 <mark>m oxide</mark> }	1327-53-3								MC Applied	Used
2 4	cadmium { <mark>cadmiun</mark> 048-002-00-0 chromium in chrom	<mark>n oxide</mark> }	1327-53-3		4.9	mg/kg	1.32	6.47	mg/kg	0.000647 %		
	048-002-00-0 chromium in chrom											
	chromium in chrom	215-146-2			<0.1	ma/ka	1.142	<0.114	ma/ka	<0.0000114 %		<lod< th=""></lod<>
			1306-19-0					-				
	<mark>oxide (worst case)</mark>			_	94.6	mg/kg	1.462	138.263	mg/kg	0.0138 %		
			1308-38-9									
4	compounds, with the of compounds spect	ium(VI) compounds the exception of bariu cified elsewhere in the	m chromate and	_	<0.3	mg/kg	2.27	<0.681	mg/kg	<0.0000681 %		<lod< th=""></lod<>
	024-017-00-8											
5 💙		oxide; copper (I) oxid			34	mg/kg	1.126	38.28	mg/kg	0.00383 %		
			1317-39-1									
6 -	lead { lead chroma	,		1	10	mg/kg	1.56	15.598	mg/kg	0.001 %		
			7758-97-6	\vdash						18		
	mercury { mercury 080-010-00-X		7487-94-7	_	0.2	mg/kg	1.353	0.271	mg/kg	0.0000271 %		
	nickel { nickel chror		1401-34-1	\vdash								
8 🛰			14721-18-7	-	24	mg/kg	2.976	71.43	mg/kg	0.00714 %		
	selenium { nickel se											
9	028-031-00-5	239-125-2	15060-62-5		1	mg/kg	2.554	2.554	mg/kg	0.000255 %		
10 🔏 -	zinc { zinc chromat	<mark>e</mark> }			FC		0 774	455.050	ma//.a	0.0155.0/		
	024-007-00-3	236-878-9	13530-65-9		56	mg/kg	2.774	155.352	mg/kg	0.0155 %		
11	pН		A		8.9	pН		8.9	рH	8.9 pH		
			PH		0.9	pri		0.9	рп	0.9 pm		
12	naphthalene				<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< th=""></lod<>
6	601-052-00-2	202-049-5	91-20-3									
13	acenaphthylene				<0.03	mg/kg		<0.03	ma/ka	<0.000003 %		<lod< th=""></lod<>
		205-917-1	208-96-8									
14	acenaphthene				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		201-469-6	83-32-9									
15 📍	fluorene	201-695-5	86-73-7		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< th=""></lod<>
16 🔍	phenanthrene	201-581-5	85-01-8		<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< th=""></lod<>
17	anthracene	204-371-1	120-12-7		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< th=""></lod<>

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
18	8	fluoranthene	205-912-4	206-44-0		0.05	mg/kg		0.05	mg/kg	0.000005 %		
19	۵	pyrene	204-927-3	129-00-0		0.05	mg/kg		0.05	mg/kg	0.000005 %		
20		benzo[a]anthracene 601-033-00-9	e 200-280-6	56-55-3		<0.06	mg/kg		<0.06	mg/kg	<0.000006 %		<lod< td=""></lod<>
21		chrysene 601-048-00-0	205-923-4	218-01-9		0.04	mg/kg		0.04	mg/kg	0.000004 %		
22		benzo[b]fluoranthei 601-034-00-4	ne 205-911-9	205-99-2		0.05	mg/kg		0.05	mg/kg	0.000005 %		
23		benzo[k]fluoranther 601-036-00-5	ne 205-916-6	207-08-9		<0.02	mg/kg		<0.02	mg/kg	<0.00002 %		<lod< td=""></lod<>
24		benzo[a]pyrene; be 601-032-00-3	enzo[def]chrysene 200-028-5	50-32-8		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
25	8	indeno[123-cd]pyre	ene 205-893-2	193-39-5		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
26		dibenz[a,h]anthrace		53-70-3		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
27	8	benzo[ghi]perylene		191-24-2		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
		1	1	1	-					Total:	0.0424 %		

Key

	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

HazWasteOnline[™]

Report created by Bradley Massey on 11 May 2022

Classification of sample: WS15-18/03/2022-1.70m

Sample details

Sample name:	
WS15-18/03/2022-1.70m	

Chapter:

LoW Code:

Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)
17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 0% No Moisture Correction applied (MC)

#		Determinand EU CLP index EC Number CAS Num		CAS Number	CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	< 1	Conc. Not Used
		number			Ö					MC	
1	8	pН				7.33 pH		7.33 pH	7.33 pH		
				PH							
	· · · · · · · · · · · · · · · · · · ·							Total:	0%		

Key

User supplied data

Classification of sample: WS02-15/03/2022-1.50m

💿 Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details LoW Code: Sample name: WS02-15/03/2022-1.50m 17: Construction and Demolition Wastes (including excavated soil Chapter: from contaminated sites) 17 05 04 (Soil and stones other than those mentioned in 17 05 Entry: 03)

.

Hazard properties

None identified

Determinands

Moisture content: 0% No Moisture Correction applied (MC)

#					Note	User entered data	Conv. Factor		Classification value	Applied	Conc. Not Used
		EU CLP index number	EC Number	CAS Number	CLP		1 actor			MC /	Useu
1	8	рН		PH	-	7.62 pH		7.62 pH	7.62 pH		
			~					Total	: 0%		

ł	٢e	٧.	

User supplied data

Classification of sample: WS07-17/03/2022-1.70m

🖾 Non Hazardous Waste
Classified as 17 05 04
in the List of Waste

Sample details

Sample name:	
WS07-17/03/2022-1.70m	

Chapter:

LoW Code:

Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites) 17 05 04 (Soil and stones other than those mentioned in 17 05 03)

. . .

Hazard properties

None identified

Determinands

Moisture content: 0% No Moisture Correction applied (MC)

#					Note	User entered data	Conv. Factor	Compound conc.	Classification value	Applied	Conc. Not Used
		EU CLP index number	EC Number	CAS Number	CLP		1 dotor		Value		USCU
1	0	pН		PH	_	6.9 pH		6.9 pH	6.9 pH		
			1					Total:	0%		

Key

0

User supplied data

Classification of sample: WS05-17/03/2022-2.00m

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name:	LoW Code:				
WS05-17/03/2022-2.00m	Chapter:	17: Construction and Demolition Wastes (including excavated s			
		from contaminated sites)			
	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05			
	-	03)			

.

Hazard properties

None identified

Determinands

Moisture content: 0% No Moisture Correction applied (MC)

#					Note	User entered data	Conv. Factor	Compound conc.	Classification	Applied	Conc. Not Used
		EU CLP index number	EC Number	CAS Number	CLP		T ACIO		Value		Useu
1	8	pН		PH		6.42 pH		6.42 pH	6.42 pH		
				1				Tota	: 0%		

∋у		

Ke

User supplied data

Classification of sample: WS13-1.00m

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name:	LoW Code:						
WS13-1.00m	Chapter:	17: Construction and Demolition Wastes (including excavated sc from contaminated sites)					
	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05 03)					

Hazard properties

None identified

Determinands

Moisture content: 0% No Moisture Correction applied (MC)

#				Note		Conv. Factor	Compound conc.	Classification value	Applied	Conc. Not Used	
		EU CLP index number	EC Number	CAS Number	CLP		Factor		value	MC /	Used
1	0	pH PH			_	7.2 pH		7.2 pH	7.2 pH		
Tota									I: 0%		

Key

0

User supplied data

HazWasteOnline[™] Report created by Bradley Massey on 11 May 2022

Classification of sample: WS14-17/03/2022-1.50m

💿 Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details LoW Code: Sample name: WS14-17/03/2022-1.50m 17: Construction and Demolition Wastes (including excavated soil Chapter: from contaminated sites) 17 05 04 (Soil and stones other than those mentioned in 17 05 Entry: 03)

.

Hazard properties

None identified

Determinands

Moisture content: 0% No Moisture Correction applied (MC)

#					Note	User entered data	Conv. Factor	Compound conc.	Classification value	Applied	Conc. Not Used
		EU CLP index number	EC Number	CAS Number	CLP		T ACIUI				Useu
1	8	рН PH				6.93 pH		6.93 pH	6.93 pH		
			~			· · · · · · · · · · · · · · · · · · ·		Total:	0%		

	/ .			
ł	٢F	٧ć	1	

User supplied data

Determinand defined or amended by HazWasteOnline (see Appendix A)

HazWasteOnline[™]

Report created by Bradley Massey on 11 May 2022

Classification of sample: WS17-16/03/2022-1.80m

Sample details

Sample name:	
WS17-16/03/2022-1.80m	

Chapter:

LoW Code:

Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)
17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 0% No Moisture Correction applied (MC)

#					o Note	User entered data	Conv. Factor			Classification value	Applied	Conc. Not Used
		EU CLP index number	EC Number	CAS Number	CLP						MC	
1	8	рН		PH	_	7.05 pH		7.05	pН	7.05 pH		
Total: 04								0%	Γ			

Key

0

User supplied data

Determinand defined or amended by HazWasteOnline (see Appendix A)

HazWasteOnline[™]

Report created by Bradley Massey on 11 May 2022

Appendix A: Classifier defined and non EU CLP determinands

• chromium(III) oxide (worst case) (EC Number: 215-160-9, CAS Number: 1308-38-9)

Description/Comments: Data from C&L Inventory Database Data source: https://echa.europa.eu/information-on-chemicals/cl-inventory-database/-/discli/details/33806 Data source date: 17 Jul 2015 Hazard Statements: Acute Tox. 4; H332 , Acute Tox. 4; H302 , Eye Irrit. 2; H319 , STOT SE 3; H335 , Skin Irrit. 2; H315 , Resp. Sens. 1; H334 , Skin Sens. 1; H317 , Repr. 1B; H360FD , Aquatic Acute 1; H400 , Aquatic Chronic 1; H410

pH (CAS Number: PH)

Description/Comments: Appendix C4 Data source: WM3 1st Edition 2015 Data source date: 25 May 2015 Hazard Statements: None.

• acenaphthylene (EC Number: 205-917-1, CAS Number: 208-96-8)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 17 Jul 2015 Hazard Statements: Acute Tox. 4; H302 , Acute Tox. 1; H330 , Acute Tox. 1; H310 , Eye Irrit. 2; H319 , STOT SE 3; H335 , Skin Irrit. 2; H315

acenaphthene (EC Number: 201-469-6, CAS Number: 83-32-9)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 17 Jul 2015 Hazard Statements: Eye Irrit. 2; H319 , STOT SE 3; H335 , Skin Irrit. 2; H315 , Aquatic Acute 1; H400 , Aquatic Chronic 1; H410 , Aquatic Chronic 2; H411

^e fluorene (EC Number: 201-695-5, CAS Number: 86-73-7)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 06 Aug 2015 Hazard Statements: Aquatic Acute 1; H400 , Aquatic Chronic 1; H410

• phenanthrene (EC Number: 201-581-5, CAS Number: 85-01-8)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 06 Aug 2015 Hazard Statements: Acute Tox. 4; H302 , Eye Irrit. 2; H319 , STOT SE 3; H335 , Carc. 2; H351 , Skin Sens. 1; H317 , Aquatic Acute 1; H400 , Aquatic Chronic 1; H410 , Skin Irrit. 2; H315

^a anthracene (EC Number: 204-371-1, CAS Number: 120-12-7)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 17 Jul 2015 Hazard Statements: Eye Irrit. 2; H319 , STOT SE 3; H335 , Skin Irrit. 2; H315 , Skin Sens. 1; H317 , Aquatic Acute 1; H400 , Aquatic Chronic 1; H410

• fluoranthene (EC Number: 205-912-4, CAS Number: 206-44-0)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 21 Aug 2015 Hazard Statements: Acute Tox. 4; H302, Aquatic Acute 1; H400, Aquatic Chronic 1; H410

• pyrene (EC Number: 204-927-3, CAS Number: 129-00-0)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 2014 Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 21 Aug 2015 Hazard Statements: Skin Irrit. 2; H315 , Eye Irrit. 2; H319 , STOT SE 3; H335 , Aquatic Acute 1; H400 , Aquatic Chronic 1; H410

• indeno[123-cd]pyrene (EC Number: 205-893-2, CAS Number: 193-39-5)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 06 Aug 2015 Hazard Statements: Carc. 2; H351

Report created by Bradley Massey on 11 May 2022

benzo[ghi]perylene (EC Number: 205-883-8, CAS Number: 191-24-2)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 28/02/2015 Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 23 Jul 2015 Hazard Statements: Aquatic Acute 1; H400 , Aquatic Chronic 1; H410

• TPH (C6 to C40) petroleum group (CAS Number: TPH)

Description/Comments: Hazard statements taken from WM3 1st Edition 2015; Risk phrases: WM2 3rd Edition 2013 Data source: WM3 1st Edition 2015 Data source date: 25 May 2015 Hazard Statements: Flam. Liq. 3; H226 , Asp. Tox. 1; H304 , STOT RE 2; H373 , Muta. 1B; H340 , Carc. 1B; H350 , Repr. 2; H361d , Aquatic Chronic 2; H411

• ethylbenzene (EC Number: 202-849-4, CAS Number: 100-41-4)

EU CLP index number: 601-023-00-4 Description/Comments: Additional Hazard Statement(s): Carc. 2; H351 Reason for additional Hazards Statement(s): 03 Jun 2015 - Carc. 2; H351 hazard statement sourced from: IARC Group 2B (77) 2000

^a 1,1-dichloroethane and 1,2-dichloroethane (combined) (EC Number: 203-458-1, 200-863-5, CAS Number: 107-06-2, 75-34-3)

Description/Comments: Combines the hazard statements and risk phrases for 1,1-dichloroethane and 1,2-dichloroethane

Data source: N/a Data source date: 14 Oct 2016 Hazard Statements: Flam. Liq. 2; H225 , Acute Tox. 4; H302 , Skin Irrit. 2; H315 , Eye Irrit. 2; H319 , STOT SE 3; H335 , Carc. 1B; H350 , Aquatic Chronic 3; H412

• dichlorodifluoromethane (EC Number: 200-893-9, CAS Number: 75-71-8)

Description/Comments: VOC; Data from C&L Inventory Database Data source: https://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 02 Mar 2017 Hazard Statements: Aquatic Chronic 3; H412, Ozone 1; H420, Press. Gas; H280

• trichlorofluoromethane (EC Number: 200-892-3, CAS Number: 75-69-4)

Description/Comments: VOC; Data from C&L Inventory Database Data source: https://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 02 Mar 2017 Hazard Statements: Acute Tox. 4; H312 , Ozone 1; H420

^a 2,2-dichloropropane (EC Number: 209-832-0, CAS Number: 594-20-7)

Description/Comments: VOC; Data from C&L Inventory Database Data source: https://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 02 Mar 2017 Hazard Statements: Acute Tox. 4; H332 , Flam. Liq. 2; H225 , Acute Tox. 4; H302 , Acute Tox. 4; H312 , Eye Irrit. 2; H319

• bromochloromethane (EC Number: 200-826-3, CAS Number: 74-97-5)

Description/Comments: VOC; Data from C&L Inventory Database

Data source: https://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 02 Mar 2017

Hazard Statements: Acute Tox. 4; H312 , Skin Corr. 1B; H314 , Eye Dam. 1; H318 , Acute Tox. 4; H332 , STOT SE 3; H335 , Skin Irrit. 2; H315 , Ozone 1; H420

• bromodichloromethane (EC Number: 200-856-7, CAS Number: 75-27-4)

Description/Comments: VOC; Data from C&L Inventory Database; IARC considers substance Group 2B; Data source: https://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 02 Mar 2017 Hazard Statements: Acute Tox. 4; H302, Skin Irrit. 2; H315, Eye Dam. 1; H318, Eye Irrit. 2; H319, STOT SE 3; H335, Muta. 1B; H340, Carc. 1B; H350, Repr. 1A; H360

• trans-1,3-dichloropropene (EC Number: 431-460-4, CAS Number: 10061-02-6)

Description/Comments: VOC; Data from C&L Inventory Database

Data source: https://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 02 Mar 2017

Hazard Statements: Flam. Liq. 3; H226 , Acute Tox. 3; H301 , Asp. Tox. 1; H304 , Acute Tox. 3; H311 , Skin Irrit. 2; H315 , Skin Sens. 1; H317 , Eye Irrit. 2; H319 , Acute Tox. 4; H332 , STOT SE 3; H335 , Aquatic Chronic 1; H410

HazWasteOnline[™]

Report created by Bradley Massey on 11 May 2022

[•] **1,3-dichloropropane** (EC Number: 205-531-3, CAS Number: 142-28-9)

Description/Comments: VOC; Data from C&L Inventory Database

Data source: https://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 02 Mar 2017

Hazard Statements: Acute Tox. 4; H332 , Flam. Liq. 2; H225 , Flam. Liq. 3; H226 , Skin Irrit. 2; H315 , Eye Irrit. 2; H319 , STOT SE 3; H335

• dibromochloromethane (EC Number: 204-704-0, CAS Number: 124-48-1)

Description/Comments: VOC; Data from C&L Inventory Database; IARC considers substance Group 3; Data source: https://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 02 Mar 2017

Hazard Statements: Acute Tox. 4; H302 , Acute Tox. 4; H312 , Skin Irrit. 2; H315 , Eye Irrit. 2; H319 , Acute Tox. 4; H332 , STOT SE 3; H335 , STOT SE 3; H336 , Muta. 2; H341 , Aquatic Chronic 2; H411

• 1,1,1,2-tetrachloroethane (EC Number: 211-135-1, CAS Number: 630-20-6)

Description/Comments: VOC; Data from C&L Inventory Database; IARC considers substance Group 2B; Data source: https://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 02 Mar 2017 Hazard Statements: Acute Tox. 4; H302 , Acute Tox. 1; H310 , Eye Irrit. 2; H319 , Acute Tox. 3; H331 , Eye Dam. 1; H318 , Acute Tox. 4; H332 , Carc. 2; H351 , Acute Tox. 4; H312 , Aquatic Chronic 3; H412 , Skin Irrit. 2; H315

• tert-butylbenzene (EC Number: 202-632-4, CAS Number: 98-06-6)

Description/Comments: VOC; Data from C&L Inventory Database

Data source: https://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 02 Mar 2017

Hazard Statements: Flam. Liq. 3; H226 , Skin Irrit. 2; H315 , Eye Irrit. 2; H319 , Acute Tox. 3; H331 , Acute Tox. 4; H332 , STOT SE 3; H335 , Asp. Tox. 1; H304 , Aquatic Chronic 2; H411

• sec-butylbenzene (EC Number: 205-227-0, CAS Number: 135-98-8)

Description/Comments: VOC; Data from C&L Inventory Database Data source: https://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 02 Mar 2017 Hazard Statements: Flam. Liq. 3; H226 , Asp. Tox. 1; H304 , Skin Irrit. 2; H315 , Eye Irrit. 2; H319 , Aquatic Chronic 2; H411

• 4-isopropyltoluene (EC Number: 202-796-7, CAS Number: 99-87-6)

Description/Comments: VOC; Data from C&L Inventory Database Data source: https://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 02 Mar 2017 Hazard Statements: Flam. Liq. 3; H226 , Asp. Tox. 1; H304 , Skin Irrit. 2; H315 , Eye Irrit. 2; H319 , STOT SE 3; H335 , Aquatic Chronic 2; H411

• n-butylbenzene (EC Number: 203-209-7, CAS Number: 104-51-8)

Description/Comments: VOC; Data from C&L Inventory Database Data source: https://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 02 Mar 2017 Hazard Statements: Flam. Liq. 3; H226, Skin Irrit. 2; H315, Eye Irrit. 2; H319, Aquatic Acute 1; H400, Aquatic Chronic 1; H410

• hexachlorobutadiene (EC Number: 201-765-5, CAS Number: 87-68-3)

Description/Comments: VOC; Data from C&L Inventory Database; IARC considers substance Group 3; Data source: https://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 02 Mar 2017 Hazard Statements: Acute Tox, 3: H301 Acute Tox, 2: H310 Skin Irrit, 2: H315 Skin Sens, 1: H317 Eve

 $\begin{array}{l} \mbox{Hazard Statements: Acute Tox. 3; H301, Acute Tox. 2; H310, Skin Irrit. 2; H315, Skin Sens. 1; H317, Eye Irrit. 2; H319, Acute Tox. 2; H330, Carc. 2; H351, Repr. 2; H361, STOT SE 2; H371, Aquatic Acute 1; H400, Aquatic Chronic 1; H410 \\ \end{array}$

• 1,2,3-trichlorobenzene (EC Number: 201-757-1, CAS Number: 87-61-6)

Description/Comments: VOC; Data from C&L Inventory Database Data source: https://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 02 Mar 2017 Hazard Statements: Acute Tox. 4; H302 , Skin Irrit. 2; H315 , Eye Irrit. 2; H319 , STOT SE 3; H335 , STOT SE 3; H336 , Aquatic Acute 1; H400 , Aquatic Chronic 3; H410

^{**•**} 2-nitrophenol (EC Number: 201-857-5, CAS Number: 88-75-5)

Description/Comments: VOC; Data from C&L Inventory Database

Data source: https://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 02 Mar 2017

Hazard Statements: Acute Tox. 4; H302 , Acute Tox. 4; H312 , Skin Irrit. 2; H315 , Eye Irrit. 2; H319 , Acute Tox. 4; H332 , STOT SE 3; H335 , STOT RE 2; H373 , Aquatic Acute 1; H400 , Aquatic Chronic 1; H410

Report created by Bradley Massey on 11 May 2022

[•] 2-chloronaphthalene (EC Number: 202-079-9, CAS Number: 91-58-7)

Description/Comments: VOC; Data from C&L Inventory Database Data source: https://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 02 Mar 2017 Hazard Statements: Eye Irrit. 2; H319 , STOT SE 3; H335 , Skin Irrit. 2; H315

^a 2-methyl naphthalene (EC Number: 202-078-3, CAS Number: 91-57-6)

Description/Comments: VOC; Data from C&L Inventory Database Data source: https://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 02 Mar 2017 Hazard Statements: Acute Tox. 4; H302 , Skin Irrit. 2; H315 , Eye Irrit. 2; H319 , STOT SE 3; H335 , STOT SE 3; H336 , Aquatic Acute 1; H400 , Aquatic Chronic 1; H410

• di-n-octyl phthalate (EC Number: 204-214-7, CAS Number: 117-84-0)

Description/Comments: VOC; Data from C&L Inventory Database Data source: https://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 02 Mar 2017 Hazard Statements: Repr. 2; H361, Skin Sens. 1; H317, Resp. Sens. 1; H334, Eye Irrit. 2; H319, Aguatic Chronic 4; H413

• diethyl phthalate (EC Number: 201-550-6, CAS Number: 84-66-2)

Description/Comments: VOC; Data from C&L Inventory Database Data source: https://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 02 Mar 2017 Hazard Statements: Skin Irrit. 2; H315 , Acute Tox. 3; H331 , Acute Tox. 3; H311 , STOT SE 3; H335 , STOT RE 2; H373 , Repr. 2; H361 , Acute Tox. 4; H302 , STOT SE 3; H336 , Skin Sens. 1; H317 , Aquatic Chronic 1; H410

[•] dimethyl phthalate (EC Number: 205-011-6, CAS Number: 131-11-3)

Description/Comments: VOC; Data from C&L Inventory Database Data source: https://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 02 Mar 2017

Hazard Statements: Skin Irrit. 2; H315 , Eye Irrit. 2; H319 , Acute Tox. 3; H331 , STOT SE 3; H335 , STOT SE 3; H336 , Repr. 2; H361 , Aquatic Chronic 3; H412

• 4-bromophenylphenylether (EC Number: 202-952-4, CAS Number: 101-55-3)

Description/Comments: VOC; Data from C&L Inventory Database

Data source: https://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 02 Mar 2017

Hazard Statements: Acute Tox. 4; H302 , Skin Irrit. 2; H315 , Skin Sens. 1; H317 , Eye Dam. 1; H318 , Eye Irrit. 2; H319 , Aquatic Acute 1; H400 , Aquatic Chronic 1; H410

• 4-chlorophenylphenylether (EC Number: 230-281-7, CAS Number: 7005-72-3)

Description/Comments: VOC; Data from C&L Inventory Database

Data source: https://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 02 Mar 2017

Hazard Statements: Acute Tox. 4; H302 , Skin Irrit. 2; H315 , Skin Sens. 1; H317 , Eye Dam. 1; H318 , Eye Irrit. 2; H319 , STOT SE 3; H335 , Aquatic Acute 1; H400 , Aquatic Chronic 1; H410

• bis(2-chloroethoxy)methane (EC Number: 203-920-2, CAS Number: 111-91-1)

Description/Comments: VOC; Data from C&L Inventory Database

Data source: https://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 02 Mar 2017

Hazard Statements: Acute Tox. 3; H301 , Acute Tox. 4; H312 , Acute Tox. 1; H330 , Acute Tox. 2; H330 , STOT SE 1; H370 , STOT RE 2; H373

^e carbazole (EC Number: 201-696-0, CAS Number: 86-74-8)

Description/Comments: VOC; Data from C&L Inventory Database; IARC considers substance Group 2B; Data source: https://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 02 Mar 2017 Hazard Statements: Acute Tox. 4; H302, Skin Irrit. 2; H315, Eye Irrit. 2; H319, STOT SE 3; H335, Muta. 2; H341, Carc. 2; H351, Aquatic Acute 1; H400, Aquatic Chronic 1; H410, Acute Tox. 3; H331, Acute Tox. 3; H311, Acute Tox. 3; H301

• dibenzofuran (EC Number: 205-071-3, CAS Number: 132-64-9)

Description/Comments: VOC; Data from C&L Inventory Database

Data source: https://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 02 Mar 2017

Hazard Statements: Acute Tox. 4; H302 , Acute Tox. 4; H312 , Acute Tox. 4; H332 , Aquatic Chronic 2; H411

Report created by Bradley Massey on 11 May 2022

• hexachloroethane (EC Number: 200-666-4, CAS Number: 67-72-1)

Description/Comments: VOC; Data from C&L Inventory Database; IARC considers substance Group 2B;

Data source: https://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 02 Mar 2017

Hazard Statements: Skin Irrit. 2; H315 , Eye Irrit. 2; H319 , STOT SE 3; H335 , Carc. 2; H351 , Aquatic Acute 1; H400 , Aquatic Chronic 1; H410 , STOT RE 2; H373

Appendix B: Rationale for selection of metal species

arsenic {arsenic trioxide}

Reasonable case CLP species based on hazard statements/molecular weight and most common (stable) oxide of arsenic. Industrial sources include: smelting; main precursor to other arsenic compounds (edit as required)

cadmium {cadmium oxide}

Reasonable case CLP species based on hazard statements/molecular weight, very low solubility in water. Industrial sources include: electroplating baths, electrodes for storage batteries, catalysts, ceramic glazes, phosphors, pigments and nematocides. (edit as required) Worst case compounds in CLP: cadmium sulphate, chloride, fluoride & iodide not expected as either very soluble and/or compound's industrial usage not related to site history (edit as required)

chromium in chromium(III) compounds {chromium(III) oxide (worst case)}

Reasonable case species based on hazard statements/molecular weight. Industrial sources include: tanning, pigment in paint, inks and glass (edit as required)

chromium in chromium(VI) compounds {chromium (VI) compounds, with the exception of barium chromate and of compounds specified elsewhere in this Annex}

Worst case species based on hazard statements/molecular weight (edit as required)

copper {dicopper oxide; copper (I) oxide}

Reasonable case CLP species based on hazard statements/molecular weight and insolubility in water. Industrial sources include: oxidised copper metal, brake pads, pigments, antifouling paints, fungicide. (edit as required) Worse case copper sulphate is very soluble and likely to have been leached away if ever present and/or not enough soluble sulphate detected. (edit as required)

lead {lead chromate}

Worst case CLP species based on hazard statements/molecular weight (edit as required)

mercury {mercury dichloride}

Worst case CLP species based on hazard statements/molecular weight (edit as required)

nickel {nickel chromate}

Worst case CLP species based on hazard statements/molecular weight (edit as required)

selenium {nickel selenate}

Worst case CLP species based on hazard statements/molecular weight (edit as required)

zinc {zinc chromate}

Worst case CLP species based on hazard statements/molecular weight (edit as required)

Appendix C: Version

HazWasteOnline Classification Engine: WM3 1st Edition v1.1, May 2018 HazWasteOnline Classification Engine Version: 2022.103.5089.9622 (13 Apr 2022) HazWasteOnline Database: 2022.103.5089.9622 (13 Apr 2022)

This classification utilises the following guidance and legislation: WM3 v1.1 - Waste Classification - 1st Edition v1.1 - May 2018 CLP Regulation - Regulation 1272/2008/EC of 16 December 2008 1st ATP - Regulation 790/2009/EC of 10 August 2009 2nd ATP - Regulation 286/2011/EC of 10 March 2011 3rd ATP - Regulation 618/2012/EU of 10 July 2012 4th ATP - Regulation 487/2013/EU of 8 May 2013 Correction to 1st ATP - Regulation 758/2013/EU of 7 August 2013 5th ATP - Regulation 944/2013/EU of 2 October 2013 6th ATP - Regulation 605/2014/EU of 5 June 2014 WFD Annex III replacement - Regulation 1357/2014/EU of 18 December 2014 Revised List of Waste 2014 - Decision 2014/955/EU of 18 December 2014 7th ATP - Regulation 2015/1221/EU of 24 July 2015 8th ATP - Regulation (EU) 2016/918 of 19 May 2016 9th ATP - Regulation (EU) 2016/1179 of 19 July 2016 10th ATP - Regulation (EU) 2017/776 of 4 May 2017 HP14 amendment - Regulation (EU) 2017/997 of 8 June 2017 13th ATP - Regulation (EU) 2018/1480 of 4 October 2018 14th ATP - Regulation (EU) 2020/217 of 4 October 2019 15th ATP - Regulation (EU) 2020/1182 of 19 May 2020 The Chemicals (Health and Safety) and Genetically Modified Organisms (Contained Use)(Amendment etc.) (EU Exit) Regulations 2019 - UK: 2019 No. 720 of 27th March 2019 The Chemicals (Health and Safety) and Genetically Modified Organisms (Contained Use)(Amendment etc.) (EU Exit) Regulations 2020 - UK: 2020 No. 1567 of 16th December 2020 The Waste and Environmental Permitting etc. (Legislative Functions and Amendment etc.) (EU Exit) Regulations 2020 - UK: 2020 No. 1540 of 16th December 2020

17th ATP - Regulation (EU) 2021/849 of 11 March 2021

APPENDIX 14 - Relevant Legislative Background

Legislative Background

Environmental liabilities and risks have been evaluated in terms of a source -pathway - target relationship in accordance with the approach set out in:

- The 1995 Environment Act;
- The Contaminated Land (England) Regulations 2000;
- The DETR circular 02/2000 Environmental Protection Act 1990: Part IIA Contaminated Land.

Contaminated land is defined within the legislative framework as land which is in such condition by reason of substances in, on or under the land that:

- 1) Significant harm is being caused or there is a significant possibility of such harm being caused;
- 2) Significant pollution of controlled waters is being or is likely to be caused.

The potential for harm is based on the presence of three factors:

- Source substances that are potential contaminants or pollutants that may cause harm;
- Pathway a potential route by which contaminants can move from the source to the receptor;
- Receptor a receptor that may be harmed, for example the water environment, humans and water.

Where a source, pathway and target are all present a pollutant linkage exists and there is potential for harm to be caused. The presence of a source does not automatically imply that a contamination problem exists, since contamination must be defined in terms of pollutant linkages and unacceptable risk of harm. The nature and importance of both pathways and receptors are site specific and will vary according to the intended end use of the site, its characteristics and its surroundings.

The key principle which supports the SPR approach is 'suitable for use' criteria. This requires remedial action only where contamination is considered to pose unacceptable actual or potential risks to health or the environment and, taking into account the proposed use of the site.

Relevant Guidance Documents

This report has been prepared in accordance with the list of guidance below however the list is not exhaustive:

- LCRM Model Procedures;
- Contamination and Environmental Matters Their implications for Property Professionals (2nd Edition RICS Nov 2003);
- Brownfields Managing the development of previously developed land A client's guide, CIRIA 2002;
- DEFRA and Environment Agency publications CLR7 10, supported by the TOX guides and SGV guides, dated March 2002;
- DETR Circular 02/2000, Contaminated Land: Implementation of Part IIA of the Environmental Protection Act 1990;
- Environment Agency technical advice to third parties on Pollution of Controlled Waters for Part IIA of the EPA1990, May 2002;

Relevant Legislative Documents

The following is a non-exhaustive list of legislative framework documents that has been considered in the production of this report:

- The Environment Act (1995);
- The Environmental Protection Act 1990: Part 2A Contaminated Land Statutory Guidance (2012);
- The Environment Protection Act (1990);
- The Contaminated Land (England) Act (2000);
- Contaminated Land (England) Regulations (2012);
- The Water Resources Act (1991);
- The Pollution Prevention and Control (England and Wales) Regulations (2000);
- The Landfill Regulations (England and Wales) Regulations (2002);
- The Landfill (England and Wales) (Amendment) Regulations (2004);
- Health and Safety at Work Act;

APPENDIX 15 - Limitations

Limitations

This contract was completed by Groundtech Consulting on the basis of a defined programme and scope of works and terms and conditions agreed with the client. This report was compiled with due skill and care, taking into consideration the project brief provided, project objectives, agreed scope of works, prevailing site conditions and budget allocation.

Other than that defined in the paragraph above, Groundtech Consulting provides no other accountability or warranty whether express or implied, is made in relation to the services. Unless otherwise agreed this report has been prepared exclusively for the use and reliance of the client in accordance with generally accepted industry practices and for the intended purposes as stated in the agreement under which this work was completed. This report may not be relied upon, or transferred to, by any other party without the written agreement of a Director of Groundtech Consulting. A third party who relies on this report, does so at their own and sole risk and no liability to such parties is provided by Groundtech Consulting.

It is the understanding of Groundtech Consulting that this report is to be used for the intended purpose as set out in the introduction. The purpose was instrumental in determining the scope and level of the services provided. Should the purpose of the report or the proposed end use of the site change, this report will no longer be directly applicable, and its validity readdressed. No reliance upon the report in the revised situation should be assumed by the client without the permission of Groundtech Consulting.

The report was written in 2022, later changes in legislation, statutory requirements and industry best practices have not been considered and this should be allowed for. Ground conditions can also change and should be investigated if there is any significant delay in acting on the findings of this report. The period of time may result in changes in site conditions, regulatory or other legal provisions, technology or economic conditions which could render the report inaccurate or unreliable. The information and conclusions in this report should not be relied upon in the future without the written confirmation from Groundtech Consulting that it is safe to do so.

The observations and conclusions outlined in this report are based exclusively on the services that were provided as set out in the agreement between the client and Groundtech Consulting.

Groundtech Consulting are not liable for the existence of any condition, the discovery of which would require additional investigation outside the agreed scope of works or core competency. The services provided are based upon Groundtech Consulting observations of existing physical conditions at the site gained from site reconnaissance together with interpretation of information including documentation, obtained from third parties and from the client on the history and usage of the site. The findings and recommendations contained in this report are based in part upon information provided by third parties, and Groundtech Consulting assume the information to be correct.

No responsibility can be accepted for errors for third party information presented in this report. Groundtech Consulting were not authorised to independently verify the accuracy or completeness of information, documentation or materials received from the client or third parties, including laboratories and information services, during the performance of the services. Groundtech Consulting are not liable for any inaccurate information, misrepresentation of data or conclusions, which may inform the scope of investigation undertaken by Groundtech Consulting and forms the contract with the client.

Where field investigations have been carried out these have been restricted to a level of detail required to achieve the stated objectives of the work. Ground conditions can also be variable due to its heterogeneous

properties and as investigation exploratory locations only allow examination of the ground at discrete locations. The potential exists for ground conditions to be encountered which are different to those considered in this report, particularly between exploratory holes. The extent of the limited area depends on the soil and groundwater conditions, together with other constraints such as the position of any existing structures and underground utilities. Geo-Environmental testing was carried out for a limited number of parameters [as stipulated in the contract] based on an understanding of the available operational and historical information, and it should not be inferred that other chemical species are not present.

The groundwater conditions entered on the exploratory hole records are those observed at the time of investigation. The groundwater level often has not had time to reach equilibrium and a monitoring period is required. Furthermore, groundwater levels are subject to seasonal variation or changes in local drainage conditions and higher groundwater levels may occur at other times of the year than were recorded during this investigation.

Any site drawings provided in this report are not meant to be an accurate base plan, but are preliminary and used to present the general relative locations of features on, and surrounding, the site.

